LETS: AN EXPRESSIONRL LOOP NOTRTION RCHUSETTS
INST OF TECH CRHBRIDGE ARTIFICIAL INTELLIGENCE LRB
C WATERS OCT 82 Al-M-680 N@@0@14-88-C-0585
UNCLASSIFIED F/G 9/2

. 3
. ‘ o ste! AN
.....
< R .) [4 . ..
Y s P B < 4 ETRIR RN XY » h) ¢ LR !
e e e e e LT (RN AL PR -
i A ” [IARE N G o
ol ok kS vl DRACRTHENE AL g ALY f
& S e ¥ N

ey
.
P
.
0
4
o
)
L
N

I R T]

RS T Rl Nl S 2SN it o,

g o
.4 5,
[
Ve
b

Y

ﬁ

FEE

, EEEE
|

My e w
P S D

VAT
PSR TR Wity

e e SO
PR

! .m—Bmummuuu.m

~ AW L
| .O
 oT———
IA——
o ——
———
SE———
l L] l

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

s B

e T

A W Y R T W A e TRl OB e
b st AATL R L L T ot b BRP LR AN o
- " v - » . -
P
ot

A

- - S
EarmENIND gy DA STy e o .
- . AR A 2RV o T i GEREA I I S p -
.) KA B [y - -y
L R ey - L e - Wenr

" oy

T

UNCLASSIFIED

SECURITY CLASSIFICATION OF TRIS PAGE (When Dats Entered)

READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

P ——————————
1. REPORY NUMBER

2. GOVY ACCESSION NO.

b - Pr2R2 /0

3. RECIPIENT'S CATALOG NUMBER

MEMO 680

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

LETS: An Expressional Loop Notation

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(a)

8. CONTRACT OR GRANT NUMBER(s)

Richard C. Waters

NOOO14-80-C~0505
MCS-7912179

9. PERFORMING ORGANIZATION NAME *ND ADDRESS
Artificial Intelligence Laboratory
545 Technology Square

Cambridge, Massachusetts 02139

AREA & WORK UNIT NUMBERS

10. PROGRAM ELEMENT. PROJECT, TASK

1. CONTROLLING OFFICE NAME AND ADDRESS
Advanced Research Projects Agency
1400 Wilson Blvd

12. REPORT DATE
October 1982

13. NUMBER OF PAGES
Arlington, Virginia 22209

pages 65
T4, MONITORING AGENCY NAME & ADDRESS(!{ different from Controlling Oftice) | 15. SECURITY CLASS. (of thie report)
Office of Naval Research UNCLASSIFIED

Information Systems
Arlington, Virginia 22217

X - ICATY WNGRADING
HTT‘EEEE;&E‘EE'135756'&6’ o1

16. DISTRIBUTION STATEMENT (of this Report)

Distribution of this document is unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, i{ different from Report)

18. SUPPLEMENTARY NOTES

- DTIC

RA\ELECTZM™

None

19. KEY WORDS (Continue on reverse side i neceseary and identily by block number)

Loops
Programming Languages . _E_w e
E}sp .
N\

2OVSTRACT (Continue on reverss side if necessary and jdentify by dlock number)

Many loops can be more easily understood and manipulated if they are viewed
as being built up out of operations on sequences of values. A notation is
introduced which makes this viewpoint explicit., Using it, loops can be
represented as compositions of functions operating on sequences of values.

A library of standard sequence functions is provided along with facilities
for defining additional ones.

& 91103

CONTINUFD NFXT

A

S/N 0:02-014- 6601

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

R Y)

W Ty e

‘ The notation is not intended to be applicabel to every kind of
loop. Rather, it has been simplified wherever possible so that
straightforward loops can be represented extremely easily. The
expressional form of the notation makes it possible to construct
and modify such loops rapidly and accurately. The implementation
of the notatio does not actually use sequences but rather compiles
loop expressions into iterative loop code. As a result, using
the notation does not lead to a reduction in run time efficiency.

Py BTty L4
!

Ty
v rrs

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
: ARTIFICIAL INTELLIGENCE LABORATORY

PPN

Yoe

A.L. Mcmo No. 680) October 1982

vas DA)
W Sy DR

Lg_ts Accession For

— NTIS GRA&I g
DTIC TAB

An Expressional Loop Notation | Ueemoweed O

Justif ication.________,

N by By.
- Distribution/
. Richard C. Waters Availability Codes
- Avail and/or
Y _ Dist Special

»

- ABSTRACT

Many loops can be more casily understood and manipulated if they are viewed as being
built up out of operations on sequences of values. A notation is introduced which makes this
viewpoint explicit. Using it, loops can be represented as compositions of functions opcrating
on scquences of values. A library of standard sequénce functions is provided along with ‘-
facilitics for defining additional ones. i

The notation is not intended to be applicable to cvery kind of loop. Rather, it has been
simplified wherever possible so that straightforward loops can be represented oxtremely
- casily. The expressional form of the notation makes it possible to construct and modify such
o loops rapidly and accurately. The implementation of the notation docs not actually use
3 ' sequences but rather compiles Joop expressions into iterative loop code. As a result, using the
notation docs not lead to a reduction in run time cfficiency.

]
by YRV Iy

RY 2 gadd e A
X A
“‘-~"“'A A

‘This report describes rescarch done at the Artificial Intelligence Laboratory of the Massachusctts Institute of

2 ‘Yochnology. Support for the laboratory's artificial intclligence rescarch has been provided in part by the
' Advanced Research Projects Agency of the Department of Defense under Office of Naval Rescarch contract
N00014-80-C-05085. and in part by National Scicnce Foundation grant MCS-7912179.

s b ‘The views and conclusiuns contained in this paper are those of the author. and should not be interpreted as
. necessarily representing the official poicics, cither expressed or implied, of the Departncnt of Defense, or the
. United States Government.

(40 A b ettty

T, .
2%

s o,

ATied i¥ Tava 3 s A

T Er.

~

Introduction

This paper presents an cexpressional loop notation based on the ideas described in [16,17]. The notation
makes it possible to represent loops as compositions of functions applied to sequences of values. ‘The
principal benefit of the notation is that it brings the powerful metaphor of expressions and decompaosability to
bear on the domain of loops. Wherever this metaphor can be applicd, it makes algorithis much casier to
construct, understand. and modify.)

The paper is divided into four parts. The first part discusses what it means to view a loop as an expression
composed of functions operating on sequences of values. 1t then presents the major featuses of the notation
in wrms of the expressional nctaphor. It cencludes by discussing the key places where the notation does not
completely support the expressional metaphor.

The implementation of the notation does not support sequences as actual data objects, but rather compiles

loop expressions into iterative loops which operate on sequences one clement at a time. The sccond section of

the paper presents a number of additional features of the notation which are best understood from the point
of view of this clement at a time perspective. ‘This part of the paper concludes with a large example which
shows the way the notation is intended to be used.

“I'he third section of the paper evaluates the notation from sceveral points of view. First, the limits of the
applicability of the notation are described in detail. The notation is not intended to be applicable to every

-kind of foop. Rather, it is designed to make it particularly casy to represent and manipulate the kind of

straightforward loops which appear most commonly in programs, By focusing on the main concept and
resisting the temptation to add embcellishments, the notation is rendered semantically clean and easy to
undersiand. .

Sccond, the cfficiency of the code produced (or loop expressions is discussed. Duc to the fact that the
notation can be directly compiled into iterative loop code, there is no need to suffer the kind of cfficiency
penaltics which would be associated ‘with actually implementing the notation in terms of data objects
representing sequences, Appendix A contains an in depth description of the compilation process.

Third. it is argucd'thnt the notation could be implemented as a logical cxtension to almost any language.
The notation has alrcady been: implemented as a LispMachine [18)/Macl.isp [9] macro package LETS
("let ess™). (Notc that several of the macros described in this paper end in the letter 8™, ‘This "S" stands for
“sequence”, and in all cascs it is pronounced scparately.) This paper discusses the notation in the context of
this particular implementation and the examples are all couched in terms of Lisp. Howcever, none of the basic
concepts behind the notation have anything to do with the Lisp Janguage per se. Introducing the cxpressional
notation as an cxtension to the language Ada [1] is discussed.

The fourth and final part of the paper presents a comprehensive comparison between the expressional
notation and other looping constructs. ‘The concept of expressional loops presented here was motivated by
‘observing regularitics in the kinds of straightforward loops which appear in programs most often [16}. Over
the years, many language designers have also noticed various aspects of these regularitics and therefore many
of the key features of the expressional notation appear in one form or another in currently cxisting looping
constructs. The constructs which are most similar appear in the languages APL[10), Hibol [13), and
Model [11]. 'The advantage of the notation presented here is that it distills these concepts into a semantically
complete whole which is casy to understand. casy to compile, and casy to add as an cxtension to current
Janguages.

By TS

-1 .

4
dagt

FAR DY) .
L TR VIR YN

Yy
RS R AN

%1 Py
TRy - ‘.'-‘-.-

D A
-8

A .

iy l" ‘?T:" fedlr
« . PPN
N
.

‘The Expressional Mctaphor -2- ‘ - Waters

1 - 'The Expressional Metaphor

‘The key property of expressions which makes them particularly casy to construct, manipulate, and
understand is decomposability. Given an cxpression, it is easy tv decompose it into separate parts cach of
which (in the absence of side-cfTeets) can be completely understood in isolation from all of the other parts.
FFurther, the behavior of the expression as a whole is merely the composition of the behaviors of its parts.

Consider the expression "(SIN (SQRT X))". Its two parts can be understood in isolation. For example,
you can understand what the SQRT docs (i.c., compute the square root of its input) without having to think
about where its input comes from, where its cutput will be used, or about anything clsc that is going on in the
cxpression. ‘The only interaction between the two functions is the data flow between them. In order to
understand what the cxpression as a whole docs, (i.c., compute the sine of the square root of its input) you
micrely have to compose vour understandings of the two functions.

‘The primary goal behind the design of the loop notation presented here has been the development of a
notation which has the property of decomposability.

Viewing boops as Expressions Involving Se(juences

In order to represent loops as expressions, the concepts of sequences and sequerice functions which operate
on them are introduced. In this context, all other data structures are referred to as wnifary. A scquence is an
ordered (possibly infinitc) one dimensional series of unitary data objects. A sequence function is a function
which produces one or more sequences as putputs and/or consumes onc or more sequences as inputs. Loops
arc represented as expressions built out of sequence function applications.

For rcasons of cfficiency, scquences are not represented as actual data structures at run time. Rather,
cxpressions involving sequences are compiled into iterative loops in which the cxistence of the sequences is
only implicit. 'This is analogous to the way in which many program constructs arc handled by compilers. For
cxample, references to components of a record structure in a program typically appear to pass indirectly
through the structure as a whole. However, for efficicney, such references are generally compiled into direct
accesses on the components as if they were atomic objects. The existence of the structure as an identifiable
unit is only implicit in the compiled code.

Scquences and sequence functions exist as explanatory devices. The point is that thinking of loops as
compasitions of functions operating on sequences makes them casier to understand. The fact that the
compiled form is very different is in gencral of no import. (The second part of this paper discusscs situations
where the user does have to be cognizant of the compiled form.)

Consider the program SUM-POSITIVE~EXPRESSIONAL below. Its body is a sequence expression which
sums up the positive clements of a onc dimensional array. Given an array containing <0 1 -1 2 -2> the
program would produce the result 3.

(defun sum-positive-~expressional (vector)
(Rsum (Fgreater (Evector vector))))

‘The sequence function EVECTOR ("ee vector™) takes in a one dimensional array and enumerates a sequence
of the data items in the array (c.g., producing the scquence [0 1 -1 2 ~2]). (Note that the names of the
built-in scquence functions all begin with prefix letters. These letters indicate the type of operation
performed by the sequence function. The fetter "€" stands for enumerate, "6” stands for gencrator, "¢"
stands for filter, and "R" stands for reduce. In cach case, these prefix letters are pronounced scparately.)

The sequence function FGREATER ("ef grearer”) takes in a sequence and filters it producing a sequence
containing only the pusitive elements in the input scquence (c.g. producing [1 . 2 _]). Note that the
action of the filter is encoded by leaving some of the slots in the output sequence empty (symbolized by *_"

. Waters o -3 The Expressional Mctaphor.

.

rather than by creating a sequence of reduced length. In order to make this work, everything is sct up so that
empty slots are ignored in subsequent computations. The reason why the concept of cmpty slots is uscful
stems from the clement at a time metaphor and will be discussed in the sccond part of this paper.

‘Ihe sequence function RSUM (Mar sun”) takes in a scquence of integers and reduces it to a unitary object
containing their sum (c.g.. 3). ‘The scquence expression above is casy to understand because the actions of the
sequence functions can be understood in isolation from cach other, and the action of the expression as a
whole (i.c., to sum the puositive clements of a vector) is simply the composition of these actions. Further, it is
as casy to modify as any other expression,

XY S S T T e W

Simple Examples of Sequence Functions

‘This scction presents a number of built-in scquence functions which are used in cxamples in the rest of
this paper. The complete set of built-in sequence functions provided as part of the LETS macro package is
presented in Appendix B, ‘There are three basic kinds of sequence functions: unitaryssequence,
seqyencesunitary, and sequencessequence. 'The most common kind of unitaryssequence function takes some
aggregate data object and creates a sequence of its components.

Eldst list
‘Takes in a list and creates a sequence of its clements.
c.g. (E1ist '(123)) »> [123)]

Esublists list :
‘I'akes in a list and creates a sequence of its successive sublists.
eg. (Esublists '(123)) =>[(123) (23)(3))

Evector vecior&optional (first0) (l&sl (1~ (array-length vecror)))
‘'F'akes in a onc dimensional array and creates a sequence of its clements,
¢.g. (Evector<123>)+>[123] :

Efi1e file-name
Creates a scquence of values by rcading all of the objects out of the file.
c.g. (Efile "data.Visp”) => [123]
if the f11e "data.11sp” contains "123 "

Another family of unitary-»sequence functions computes a sequence of valucs according to some formula.

Erange first last optional (step-size 1)
Creates a sequence of integers by counting from first to Jast by the positive increment step-size,
cg.(Erange 482) =>[468)

Gsequence object
Generates an infinite scquence all of whose clcments are object.
e.g. (Gsequence 'A) »> [AAA ...]

The most common kind of sequencesunitary function takes in a sequence and combines the clements in it
together into an aggregate data structure.

YA
PR
»

SEPIE i O e ar e - M P Ciaafté ey L S i e S A i S A A

o ‘I'ne Expressional Metaphor

g R1 48t sequence
' CONScs the non-cmpty valucs in a scquence into a list. o
L cg., (R11st[12_3])=>(123) B
~ Rvector vector sequence doptional (firs1 0) (last (1- (array-length veclior)))
~" Stores the non-cmpty values in a sequence into successive slots of a onc dimensional array.
X cg. (Rvector CABCD>[12_3])=><123D>
Al
¥ R? 110 file-name sequence
. Writes the non~cmpty values in a sequence into the indicated file.
; ¢g.(Rf1le "data. Visp" {12 _.3]) =T
N "¢cr>1<er>2<er>3 " 1sprinted in "data.11sp”
N _
2 Another kind of sequencesunitary function computes some summary value based on the valucs in the

L sequence.

Rsum sequence-of integers

Computes the sum of the non-empty integer values in a scquence,
2 cg.. (Rsum[12_3]) =86
Rcount sequence

Counts the number of non-cmpty items m a sequcence.
cg., (Rcount [AB_.C])=>3

RYast sequence &optional (default NIL) IO
Returns the last non-cmpty element (if any) of the sequence as its value; otherwise rctums defoull. - e
cg. (R1ast[ABC._])=C

»

PR A A

Sequencessequence functions take in a seguence of valucs and compute some related sequence. They.tend
to be much more idiosynctatic than other kinds of scquence functions and only onc is predefined. The next .
scction doscribes, among other things, the mochanisms which arc used to create user dcﬁned
py sequence»sequence functions.

i

N Fgreater scquence-of-numbersdoptional (limit0)
Sclects the non-cmpty clements of a sequence of integers greater than Jimit.
< CE. (Fgreater [12_3]2)»> [.._3]

The programs below give a number of cxamples of loops built up out of the sequence functions described
above. COPY-LIST copics a list by cnumecrating the items in the list and then CONSing them up into a new list.
LAST enumerates all of the. sublists in a list and then returns the last one. SUM-FIRST -N adds up the first B
intcgers by cnumerating the integers and then summing this scquence of values,

Pl AT
=S st -2 uhnd

» e

(defun copy-1ist (11st)
- (R1ist (Elist Vist)))

(defun last (11st)
(R1ast (Esublists 14st)))

»
-

3
AU]

(defun sum-first-n (n)
(Rsum (Erange 1 n)))

™ ry
' JENOM

oYY
2 & v s ¥
e Talts L, -]

LA
[P

R T T TP W T r—p—

Waters 4 -5- ' The Expressional Metaphor

FILE-LENGTY computes the number of records in a file by enumerating them and then counting the items
in this scquence. DUMP-VECTOR prints the clements of a vector into a file. ZERO-VECIOR inilializes a vector
by sctting the elements to zero. It uses GSEQUENCE in order to gencrate a sequence of 7¢ros to use. -

(defun file-length (file-name)
(Rcount (Efile file-name)))

(defun dump-vector (file-name vector)
(Rfile file-name (Evector vector)))

(defun zero-vector (vector)
(Rvector vector (Gsequence 0)))

Meta Sequence Functions

1n addition to predefined sc'qucncc functions, the LETS macro package supports scveral mefa sequence
functions which make it casy for the user to create new sequence functions. The basic action of a meta
sequence function is to take an ordinary function and convert it into a function on sequences. Fach meta
sequence function builds a particular kind of sequence function.

"The most basic meta sequence function is (MAPS function sequence ...). MAPS is a gencralization of the
Lisp function MAP and is the principal method for creating user specified sequencessequence functions. It
takes function and converts it into a sequence function which takes in the sequence inputs and creates a
sequence output. The number of sequences provided must be compatible with the number of arguments
required by function. The nth clement of the output sequence is computed by applying fimction to the nth
clements of the input sequences. However, if the nth clement of any of the input sequences is empty then
function is not applicd and the nth clement of the output is empty. Note that the length of the output
sequence is the same as the length of the shortest input sequence. ‘The fiunction parameter can be cither a
quoted function namne, or a quotcd LAMBDA cxpression (or a macro that cxpands into cither onc). For
example, the program PAIRWISE ~MAX takes in two lists and creates a list where cach clement is the maximum
of the corresponding clements in the two input lists, ‘The ph)gram SQUARE - L IST creatcs a list of the squarcs

- of the items in a list.

(defun pairwise-max (11stl 11st2)
(R1ist (mapS #'max (EVist Vist1) (Elist 11st2))))

(defun square-list (1{st)
(R1ist (mapS #'(1ambda (x) (¢ x x)) (EVist 1ist))))

"The program TIMES-N multiplics every clement in a list by a parameter N. The point of this cxample is
that the functional argument to MAPS (and the functional arguments to the other meta scquence functions
described below) can refer to any number of free variables. These free variables do not have to be declared
special because the LETS mucro package renders the loop cntircly.as inline code,

{defun times-n (14st n)
(R1ist (mapS #'(1ambda (x) (¢ x n)) (EYist 1ist))))

An extended form of MAPS is the meta sequence function (SCANS finction init sequence ...). 'This creates a
sequence function with an internal statc variable. The input function must be a function of n+ 1 arguments
where n is the number of sequences supplied. The clements of the output are the successive values of the

_ state not including its initial (unitary) value init. The nth valuc of the state is computed by calling fiunction

with the prior value of the state as its first argument and the nth clements of the inputs as its remaining
arguments. However, if the nth clement of any of the input scquences is empty then function is not applied,

) RIATR R I T R

2

P

-
A

. Tihy Yepan @ty Jhe @ i T vy Jrneg “uhdi i N v - e Jalgde S p o Nt 3 viny Mg Shning *Aiey “Miot - fniing Moo At * RbAny“Sbuin “tske ~finy 4 LW W N e CH SR N ivea liban Jipiih v Sl oAb el e Shdn - 3 *‘
*".
The Expressional Metaphor -6- Waters ';_;
- Al f.!
the state is not changed, and the nth clement of the output is cmpty. As with MAPS, the length of the output ,
sequence is the same as the length of the shortest input scquence. SCANS is useful for creating a sequence -
function corresponding to a recurrence relation. For cxample. the program SQUARES computes a list of the ;
first N squarcs without doing any multiplication by taking advantage of fact that n2 = (n-1)2+2n-1. :
(defun squares (n) "]
(R1ist (scanS #'(lambda (n 1-squared n) (+ n-1-squared n n -1)) .
0 (Erange 1 n)))) :..j
‘The meta sequence function (FILTERS function sequence...) is uscd to create sequence functions like r-
FGREATER which sclect a subsequence of a sequence. ‘The clements of the output sequence are computed as "4
follows. If the rosult of applying fienction to the nth clements of the input scquences is non-NIL then the nth :

clement of the firsz input is used as the nth clement of the output; otherwise the nth output clement is empty.
As with MAPS, if the nth clement of any of the input scquences is empty then function is not applied and the
nth elcment of the output is empty.

As an cxample, consider the function SUM-POSITIVE-FILTER. [t uses the meta scquence function
FILTERS instcad of the sequence function FGREATER. The function REMQ takes in a list and CONScs up a new
list which is the same except that all inistances of a given item are removed. It uses a filter to select which list
elements to keep.

(defun sum—positive-fﬂtcf (vecter) .
(Rsum (filterS #'plusp (Evector vector))))

(defun remq (item Jist)
(R11st (filterS #'(lambda (x) {not (eq x item))) (Elist 11st))))

User specified seguencesunitary functions can be created by using the meta sequence function e
(REDUCES firnction init sequence...). 'This creates a sequence function with an internal state variable. The
state is initialized to the (unitary) value init. The nth value of the state is computed by calling function with
the prior value of the state as its first argument and the nth clements of the inputs as its remaining arguments.
However, if the nth clement of any. of the input scquences is empty then finction is not applied and the state
is not changed. When the input sequences are cxhausted, the final valuc of the state variable is returncd as
the (unitary) resuft. If there arc no non-cmpty clements in the input sequences then the vatue init will be
returned. ‘The meta sequence functions REDUCES and SCANS arc very closcly related. The expression
(REDUCES fiunction init sequence) is the same as (RLAST (SCANS fimction init sequence) init).

As examples, consider the following two functions. SUR-POSITIVE -REBUCER uscs REDUCES instead of a
call on RSUM. MAKE-SET takes in a list possibly containing duplicate clements and creates a list without any
duplicates which contains the samc clements. The key problem is removing duplicates. To do this, the
function uses a reducer which adds the current element into the list being created only if it is not a member of
the list already.

R T L g —

¢ . Waters ‘ -7- ‘The Expressional Mctaphor

o b
-+

R
ll.-l.
[N
)4".'
.-

(defun sum-positive-reducer (vector)
(reduceS #'+ 0 (Fgreater (Evector vector))))

{defun make-set (1ist)
(reduceS #'(lambda (state item)
(cond ((member item state) state)
(T (cons item state))))

Y

ni?
(EVist 1ist)))

The most basic way to create a unmitanwsequence function is to usc the meta scquence function
(GENERATES function init). The sequence function produced creates a sequence of clements where the
(unitary) value init is the first element and where cach successive clement is computed from the prior clement

_ by cvaluating function with the prior clement as its argument. Note that the output sequence is infinite in
extent. ‘The next two meta sequence functions can be used to create finite sequences.

A loop expression which contains only a generator will never terminate because it operates on an infinite
sequence. However, if a loop expression is working on several sequences some of which are finite and some
of which are not, it will terminate as soon as the shortest finite sequence has been exhausted. This is discussed
further in the section on termination below.,

Gencrators arc typically used in loop expressions in conjunction with finite sequences of unknown length.
For cxample, the program DIGITS-TO-NUMBER takes in a list of onc digit numbers and computes the
corresponding integer (e.g., ' (1 2 3) becomes 123). The loop expression works with two basic sequences.
It cnumerates the digits in the list in reverse order (i.c., least significant digit first). It also creates an

~ summing up the product of cach digit with ils corresponding scale factor. ‘The Joop terminates when the.digits
run out. '
(defun digits-to-number (digit~11ist)

(Rsum (map3 #'s (Elist (reverse digit~11st))
(ganeragos #'(1ambda (x) (* x 10)) 1)}))

Another example is the program FILL-VECTOR which takes in a list and uscs it to initialize the clements of
a vector. If there are more elements in the list than in the vector, the cxtra list clements arc ignored. On the
other hand, if there arc more clements in the vector, the last clement of the list is used to (ill out all of the
remaining clements of the vector,

(defun fill-vector (vector 1ist)
(Rvector vector (mapS #'car (generateS #'(lambda (x) (or (cdr x) x)) 1ist))))

Note that it is the size of the vector which controls the computation, not the length of the list. To do this

. conveniently, a generator is created which generates the successive sublists of the list, but which continues to
generate the lust sublist indefinitely once it has-been reached. The function CAR is MAPSed over the generated
sequence in order to get the desired list clements. ‘These elements are then stored in the vector. RVECTOR
contains a terrmination which stops the loop when the vector has been filled up.

The meta sequence function (TRUNCATES finction sequence...) i used to create sequence functions
‘which take in potentially infinite scquences and return sequences which have been truncated to finite length.
‘The function argument is applicd 1o successive groups of corresponding clements of the input scquences. The

DAS " output sequence is composed of the elements of the first input sequence up to but not including the first
clemnent corresponding to a non=NIL cvaluation of fiunction. <with the _«r meta sequence functions, if any
of the nth clernents of the input sequences are emipty then fisn- [1 s now applied and the nth output clement
is empty. Note that the output sequence is typically shorter than any of the input sequences, and can be of

& e SR AT T

s : unbounded scquence of scale factors consisting of the successive powers of ten. ‘The result is computed by |

L R L I B
L I PRI WAS AT DU T T W W Ui S U, W

.............

P Y g S N Bt S0 Sy Mt Yaalk el bt et cAun et LIS A e Ty e T S T oy T e T e T

‘T'he Expressional Mctaphor -8- : : Waters

length zero. .
Consider the following two cxamples which are the same as programs presented in the last section except

3
. -

Xy

VOGRS 4

K
that they use explicit gencrators and truncators, SUM-FIRST-N-TRUNCATOR gencerates an infinite sequence of .
integers and truncates it after N. The resulting sequence is then summed. LAST-TRUNCATOR gencrates the ,,
~decessive CORs of a list and truncates this when NIL is reached. The last sublist is returned. b
(defun sum-first-n-truncator (n)
{Rsum (truncateS #'(lambda (x) (> x n)) (generateS #'i+ 1}))) :
(defun last-truncator (11st) .
(Rlast (truncateS #'nul1 (generateS #'cdr 1ist)))) 4

‘Truncators arc a great deal like filiers in that they take in a sequence and return a restricted sequence.
However, they differ in one very important way -- they cause the loop to terminate. Even when a filter sclects
only a finite number of clements out of an infinite sequence, it never causcs the Joop to terminate. For
cxample, the program SUM-FIRST-N-BUGGY will never terminate even though the correct numbcers have been
sclected. Note that it is not in general possible to detect when a filter has reached a point where no more
clements of the input sequence will satisfy the filter test.

(defun sum-first-n-buggy (n)
{Rsum (filterS #'(lambda (x) (not (> x n))) (generateS #'1+ 1))))
The meta scquence function (ENUMERATES:truncate-function generqie-function init) is an abbreviation for
the common combination (YVRUNCATES fruncate-function (GENERATES gencrate-funciion init}). 1For cxample
the two functions above could be written more compactl_y as follows;
(defun sum-first-n-enumerator (n) ' S
(Rsum (enumerateS #'(lambda (x) (> x n)) #'1+ 1))) -
(defun last-enumerator (1ist)
(Riast (enumerateS #'null #'cdr 1ist)))
The meta sequence functions are an cssential part of the expressional loop notation because they provide a
convenient mechanism whe. .y the user can create additional operations on scquences.

LetS

In an ordinary expression, if you want to usc the valuc of a subexpression in two places, you have to bind
this value 10 a variable. The prototypical way to do this in Lisp is with the macro LET. "The macro LETS fills
the identical role in sequence expressions. In the abscenee of side-cffects. the only cffect of using LET or LETS,
rather than merely duplicating the subexpression, is increased cfficiency due to cxecuting the subcxpression
only ence and a potential gain in the clarity of the expression.

The macro LETS is analogous to destructuring LETe. 1t has a list of bound variable valuc pairs which are
E-",'-f exccuted sequentially so that you can usc a variuble in the computation of the value 1o be bound to a later
variable. Instcad of a single variable, a tree of variables can be used to specify destructuring. Alternately, the

=7, value can be omitted in which casc it is assumed that there is no initial valuc at all. In this case the variable

i‘\-?é} must be sct before it can be read. These three cases are illustrated in the example below.

N (1etS ((v1 valuel) ((v2 v3) value2) v4)

t_; . body)

o Inside the body of a LETS you can use the form (SETQ variable value) in order to assign a sequence value -
.'2f'.j to a sequence variable. The initializing values are handled as if they were sequentially assigned o the bound)

s variables inside the LETS as illustrated beJow. Destructuring is implemented in torms of the appropriate CAR

1 ."._'..';".

aters) -9- The Expressional Metaphor.
d CDR operations. ji~
(1etS (v1 x v2 v3 va4)]
(setq v1 valuel) [;

(setq x value2)

(setq v2 (mapS #'car x)) w

(setq v3 (mapS #'cadr x)) o)
body)

Kach initializing valuc must be a sequence. LETS cannot be used to bind a variable to a unitary value.
owevcr, using GSEQUENCE, you can bind a sequence variable to an infinite sequence of a unitary value,
iich will usually be suflicient.)

‘The macro LETS contains a budy which consists of one or more loop expressions. These expressions cap—— -
er to the sequences bound o the sequence variables, and can result in cither sequence or unitary values.
¢ value of the last form must be unitary and is returned as the result of the LETS as a whole. (This and
ne additional aspects of LETS stem from the clement at a time metaphor and will not be discussed in detail
til the next part of the paper.)

As a simplc cxample, DIGITS-TO-NUMBER could be rewritten as shown below, ‘Two sequence variables
»used 10 make the loop more readable.

(defun digits-to-number-ietS (digit-1ist)
(1etS ((digits (Elist (reverse digit-1ist)))

(scales (generateS #'(lambda (x) (» x 10)) 1)))
(Rsum (mapS #'e digits scales))))

Since cach sequence variable is only used unce in DIGITS-TO-NUMBER-LETS the function is
orithmically identical to the carlier version of this function which did not use variables. A scquence
iable can of course be reicrenced more than once. ‘This will not cause the sequence to be computed more
nonce. As a result, SQUARE-LIST-LETS helow is more efficient than SQUARE-LIST-REDUNDANT,

(defun square-list-1etS (11st)

(1etS ((integers (Elist 1ist)))
(R14st (mapS #'s integers integers))))

(defun square-list-redundant (11st)
(R1ist (mapS #'+ (Elist Vist) (Elist 1ist))))

The explicit use of SETQ in a LETS is illustrated in the program DIGITS-TO~NUMBER-SETQS. The example
ws that you can make repetitive assignments redefining the value of a sequence variable just as you can in
ordinary LET. ‘The program first cnumerates the digits. It then multiplics cach one by the appropriate
le factor and then sums the resulting sequence. It is important to note that you cannot use anything other
n SETQ (or, as discussed below, MULTIPLE~VALUE) in order to assign to a sequence variable. 1n particular
| cannot use SETF or any other macro even if it expands into a SETQ.
(defun digits-to~number-setq (digits)
(1etS (integers)
(setg integers (Elist (reverse digits)))

(setq integers (» integers (generateS #'(lambda (x) (* x 10)) 1)))
(Rsum integers)))

SETQs and other forms can be uscd to assign to any number of free (unitary) variables in the body of a
S. This is often uscful for passing information out of a loop.

‘Ihe Expressional Metaphor -10- Waters

DefunS

‘I'he meta sequence functions make it possible for a user Lo create his own sequence operations, However,
these operations are only literals and must be recreated cach time they are to be used. ‘The macro DEFUNS
makes it possible for a user to created named sequence functions which he can then use in loop expressions.
‘These sequence functions are actually macros which arc compiled inline by the LETS macro package.
However, in the context of the expressional notation, they are intended to be thought of as functions just like
any other function.

(defunS name parameter-list
. body)

‘I'he micro DEFUNS is exactly analogous to DEFUN. It has two basic parts: a paramcter list and a body. The
parameter list is a list of variable names and supports four keywords: QUNITARY, &SEQUENCE, 80PTIONAL,
and &AUX. Fach of the keywords is sticky and specifics the type of all of the parameters which follow it until
another keyword changes the type. The first two keywords are used to specify whether a particular parameter
is a sequence or an ordinary unitary object. By default, the parameters are initially assumed to be unitary.
Just as in ordinary Lisp, 80PTIONAL specifics that the following paramcters arc optional. Also just as in
ordinary.).isp, &AUX specifies that the following variables are not paramecters at all, but rather just internal
values. Optional/Zinitial values can be specificd using variable value pairs. However, unlike ordinary Lisp, if
no delault value is specified then no value will be supplicd and the associated variable must be set before it
can be read.

‘I'he body of a DEFUNS is exactly the same as the body of a LETS except that the last fonm is not required to
yicld a unitary valuc. Note, however, that DEFUNS is completely different from LETS in Lhat it creates a
sequence functivn which con later be combined together with other sequence functions while LETS creates an
actual loop. ‘The value of the last form, be it unitary or scquence, is returned as the value of the sequence
function being created. "The following examples usc DEFUNS in order to define a number of the standard
sequence functions described above. Note that ELIST returns a sequence while RSUM returns a unitary value.

(defunS Elist (11st)
(mapS #'car (enumerateS #'null #'cdr 11st)))

" (defunS Rsum (&sequence num)
(reduceS #'+ 0 num))

The following definitions illustrate the use of optivnal parameters. ERANGE takes an optional positive
increment which defaults to one. FGREATER takes an optional comparison limit which defaults to zero,
EVECTOR takes an optional interval in the vector which defaults to the full limits of the vector.

(defunS Erange (first last &optional (step-size 1))
(enumerateS #'(lambda (x) (> x last)) #'(lambda (x) (+ x step-size)) first))

(defunS Fgreater (&sequence integers Runitary Boptional (1imit 0))
(filterS #'(1ambda (x) (> x 1imit)) integers))

(defunS Evector (vector &optional (start 0) (end (1- (array-length vector))))
(mapS #'(lambda (x) (aref vector x)) (Erange start end)))
The ability for the user to conveniently define his own named sequence functions is a particularly
important part of the expressional loop notation. 1t makes it possible for him to extend the notation to deal
with the particular daty abstractions he creates. A detailed example of this is given in a later scetion.

Y R SV

.
e
‘o

o

-y

b s e i
i ARTES)

1
R L 3
ets a's s 2 s

SRS

Py
v

Waters : -11- ‘ ‘The Expressional Metaphor

Multiple Values

All of the sequence functions presented above have had a single return value. The LETS macro package
supports multiple return values by supporting the standard LispMachine functions VALUES and MULTIPLE-
VALUE inside the body of a DEFUNS or LETS. For example, the function EPLIST takes in a discmbodicd plist
and returns two values: a sequence of the property numes, and a sequence of the values of those properties.
VALUES is used as the last form of the DEFUNS in order to specify that two sequences arc being returned.

(defunS Eplist (plist &sequence &aux pointers)
(setq pointers (enumerateS #'null #'cddr (cdr plist)))
(values (mapS #'car pointers) (mapS #'cadr pointers)))

The program PLIST-T0-ALIST converts a plist into an alist where the entries in the alist are created by
CONSing together successive property value pairs. ‘The program illustrates how MULTIPLE-VALUE can be used
in a LETS in order to access the two scquences returned by EPLIST,

(defun plist-to-alist (plist)
(1etS (properties values)
(multiple-value (properties values) (Eplist plist))
(rlist (mapS #'cons properties values))))
The function COUNT-AND-SUM illustrates the usc of VALUES as the last furm of a LETS in order o specify
that the loop as a whole rcturns multiple valucs.
(defun count-and-~sum (1ist)
(letS ((integers (Elist 1ist)))
(values (Rcount integers) (Rsum integers))))

(The Macl.isp version of LETS docs not support multiple return values from Joops. However, it does

support multiple return values from sequence functions such as EPLIST.)

Where the Expressional Metaphor Breaks Down

‘There are two situations in which loop expressions fail to be faithful to the expressional metaphor. ‘The
first of these involves side-cffects. If a sequence function performs side-effects which disturb the actions of
another sequence function, then the behavior of a loop expression as a whole can fail to be the composition of
the behaviors of the sequence functions when looked at scparately. (A detailed cxample of this will be
discussed later on in this paper.) It should be noted that the breakdown of the cxpressional metaphor in this
situation is not at all surprising considering that ordinary cxpressions lose the property of modularity in the
presence of side-¢ffects.

The second place where the expressional metaphor breaks down is when questions of termination are
being considered. As mentioned above, the termination of a loop expression is controlled by the length of the
scquences in it. The loop expression terminates as soon as the shorfest scquence in it is cxhausted. This is an
cxample of action at a distance which makes it impossible to understand the various parts of a loop expression
completely in isolation from cach other,

Consider again the program DIGITS-T0-NUMBER (reproduced below). Therce are several questions about
the sequence functions in this program which cannot be answered completely locally. For example, although
it is convenient to describe the gencrator as creating an infinite sequence of powers of 10, it cannot actually do
that. The generator will cventually halt with an crror due to arithmetic overflow unless some other sequence
function terminates the loop before then, On the other hand. in order to be sure that the ELIST will succeed
in cnumerating all of the digits, one must check that no other sequence function will terminate the Joop
before the end of the list of digits is reached. Because of these problems, you cannot just compose an

ST VI U T LAY Y ¥ S W > Sl

‘Ihe Expressional Metaphor -12- Waters

understanding of its parts in order to understand the loop expression as a whole.

:i; (defun digits-to-number (digit-1ist)
- (Rsum (mapS #'s (Elist (reverse digit-1ist))
(generateS #'(lambda (x) (* x 10)) 1))))

Fortunately, there is a middic ground with regard to the property of decomposability. As discussed in [16),
as long as you make no statements which depend on a specific minimum length of any sequence, any
- statement which is truc about a scquence function in isolation will be truc when it is composed with other

functions in a loop cxpression. For example, you can say that the generator creates a sequence of powers of
s 10 beginning with 1. However, you cannot make any statement about whether it will or will not get arithmetic ¥
o overflow in the process. Similarly, you can say that ELIST cnumerates successive clements of a list starting “
: with the first one. You can cven say that it will produce a sequence no longer than the list. However, you
cannot make any claim about any minimum number of list clements which definitely will be enumerated.
Given the kind of statements you can dependably make, you can determine a great deal about a loop by
using straight com'position. For cxample, in DIGITS-TO-NUMBER it is casy to tell that the valucs in the
< sequence created by the gencrator correspond to successive powers of 10, and that the sequence created by the
ELIST corrcspond lo successive digits least significant digit first. In addition, it is clcar that the program
multiplics cach digit by the appropriate powcer of 10 and that these results are summed up.
In order to go beyond this and make statcments about termination, you must do more global reasoning.
In this casc, there is only onc basic finite sequence involved (the one created by the ELIST), and it clearly
dominates the computation. As a result, the program clearly processes all of the digits and terminates
N computing the correct number,
: The two step reasoning process outlined above is usually very satisfactory for the kind of straightforward &8
\ loops the expressional notation is designed to rcprcscnl. In particular, the global rcasoning about termination '
is usually not at all difficuilt.

P

19487

s

L . Waters oo-13- ‘The Flement at a Time Metaphor
- Il - The Element at a Time Metaphor

The loop notation being presented here supports a second (clement at a time) computational metaphor in

‘ addition 10 the expressional metaphor. The expressional metaphor is based on the idca that a sequence is a

logical unit which is created in its entirety by one sequence function and then consumed by another sequence

function. ‘The element at a time metaphor is based on the idea that the computation involving all of the
scquences in a single loop proceeds in parallel and that the loop expression is cssentially describing what
i happens on a typical step in this process. For example, consider the following version of the pmgram
DIGITS-TO-NUMBER, '

(defun digits-to-number-elements (digit-1ist)

= (1etS ((digit (Elist (reverse digit-1ist)))

. (scale (generateS #'(lambda (x) (* x 10)) 1)))
: ' (Rsum (mapS #'« digit scale))))

In this program, the typical value of DIGIT is an clement of the sequence created by enumcrating the
3 input DIGIT-LIST. The typical valuc of SCALE is a power of ten taken from the sequence created by the
generator. On cach cycle of the computation, the valuc of DIGIT is multiplied by the corresponding value of
SCALE. Thc final result is the sum of these products,

If you comparc DIGITS-TO-NUMBER-ELEMENTS with the program DIGITS-TO-NUMBER-LETS above you
will sce that the only actual differencé is- that the namces of the sequence variables are singular instcad of
= " plural. ‘The only important difference is in the way they are described. ‘The clement at a time description is
o very natural for some parts of the computation (¢.g.. the multiplication of corresponding values of DIGIT and
o SCALE). Other parts of the computation (e.g.. the RSUM) only really make sensc from the point of view of the
\ cexpressional metaphor.

Te_reeg L}

N The clement ata time metaphor is intimately ticd up with the way loop cxpressions are actually compllcd
-) ‘I'he LETS macro package converts cach loop expression into an ordinary iterative loop. This loop processes
y the sequences in the expression one clement at a time with cach slot in the sequences corresponding to one
i A cycle of the loop which is produced. The correspondence between the loop produced and the clement at a
time metaphor is obvious. However, it should be notcd that while the compilation process exists purcly as a
. ' matter of cfficiency, the cicment at a time metaphor is highlighted in this discussion because it is the
motivation for a number of uscful facilities supported by the expressional notation.

The two metaphors are really very separate ideas. One could casily decide to support just one of them.
For cxample, the language APL. supports much of the expressional metaphor and relatively little of the
' clement at a time metaphor, while the language Hibol docs the opposite. Experience with the expressional
notation suggests that it is beneficial to blend these two ideas together, An interesting aspect of this is the fact
that the restrictions on the expressiona) metaphor which are needed in order to clearly support the clement at
a time metaphor are cssentially the samc restrictions which are required in order to guarantee cfficient
compilation.

A

(AR

Pt
.

LSS0

PN ™ A UL A R g P S N e et ol OEL Gyl A Ui LNl b el and Sl Lgeil v peg g e s e e o 2 S Vet e e By ¢

- . - a e TR

‘The Element at a Time Metaphor -14- ' - Waters

Implicit Map$S

‘The creation of sequencessequence functions with MAPS is so common that a syntactic sugaring has been
introduccd v make this casicr. Whenever an ordinary unitary Lisp function is applied to sequences, it is
implicitly MAPSed over those sequences. For cxample, the following version of DIGITS-TO-NUMBER is
cquivalent to the one above.

{defun digits-to-number-implicit (digit-1ist)
(letS ((digit (EVist (reverse digit-1ist)))

(scale (generateS #'(lambda (x) (e x 10)) 1)))
(Rsum (e digit scale))))

‘The function e in the last line of the program is applicd to two sequence variabies and its output is used as
a sequence by the RSUM. From the point of view of the expressional metaphor this is a type conflict and docs
not make a grcat deal of scnse. However, as a statement of what happens to the typical clements of the
sequences in the variables DIGIT and SCALE (i.c.. that they are muiltiplied) it makes a lot of sense. Implicit
introduction of MAPS is provided in order to support this vicwpoint.

MAPS is introduced implicitly in situations morc complex than the onc above. A full statcment of the
process is as follows: If a unitary expression appears in an environmen! where a sequence value is expected then
the entire expression down to, but not including, any components which create sequences is scparated oul as a
LAMBDA expression and MAPScd. ‘This is demonstrated by the following three pairs of equivalent loop
expressions. ‘The second pair illustrates the fact that an expression might not refer to any scquence values at
all. In this casc it will be converted to a LAMBDA expression of no arguments and still be MAPSed. (Note that,
as s, this particular cxample would attempt to create an infinite list.) The third pair illustrates that implicit
MAPS introduction is applicd to expressions involving fexprs and macros in cxactly the same way as it is to
other expressions.

(R11st (1+ (* (Elist 1ist1) (+ 2 (EVist 115t2)))))
same as: (R11st (mapS #'(lambda (x y) (1+ (¢ x (+ 2 y))))

(E1ist Vist1)
(E1ist 11st2)))

(Ri4st (ncons T))
same as: (R1ist (mapS #'(lambds () (ncons T))))

(R11st (let ((z (E1ist 1ist)))
(push (» 2z 2) stack)
z))
same as: (RV1ist (mapS #'(lambda (x)
(et ((2 x))
(push (* z 2) stack)
- 2))
(Elist 11st)))

A potential aspect of the expressional metaphor is sacriﬁccd‘ in order o support implicit MAPS
introduction. I nothing clse werce said you would expect that sequences were real data objects and that they
could be passed between non-sequcnce functions and operated on by ordinary unitary functions likc CONS.
However, this is not possible because all such expressions are converted by implicit MAPS introduction into
scquence functions. As a result, a sequence can never be operated on by anything other than a sequence
function and sequences arce always contained completely inside sequence expressions. 1t should be noted that
this is a restriction which has to be imposed in any case in order to insere efficient compilation. 1f scquences
were allowed to escape from the confines of sequence expressions then there would have to be an oxplicit
representation for them, and it would not be possible to efficiently compile any loop which communicated

£

Y
o
i
——

A by N

"

PAPEAN
'

O

)

RO
BOAS
Joar

T AT AR
' .*_o. ERY]
.2 AP

™ T
(gl

b
chlS

-

Lo a4
.

B
‘u_" r'

Watcrs . -15- The Element at a Time Mctaphor

sequences from (or to) the surrounding cnvironment. As a result, nothing of great import is actually being
sacrificed in order to support implicit MAPS introduction.

Filters and Expressions Involving Multiple Sequences

In order to support the clement at a time metaphor c'vcry sequence function (including those created by
the meta sequence functions) is guaranteed to have the property of registration. As discussed above, a
sequence is an ordered series of slots containing values. ‘The registration property requires that the nth
clement in the scquence produced by a sequence function must be computed from the nth clements of the
input sequences to that function. The computation can also involve state variables internal to the sequence
function, but it cannot refer t any other clements in the inputs. "The fact that the registration property is
universally satisfied insurcs that it makes sense w talk about the interaction between the nth values in all of
the sequences in a loop expression as zypical because they are computed from cach other.

The only sequence functions where there is any logical difficulty in satisfying the registration property are
filters. It would be perfectly reasonable to say that a filter takes in a scquence and produces a shorter
sequence containing only selected clements of the input sequence. From the point of view of the expressional
metaphor there is nothing wrong with this definition, and there would be no difficulty in understanding a
program like SUM-POSITIVE-EXPRESSIONAL bascd on this definition.

Hawever. if filters produced shortencd sequences, they would not satisly the registration property. In
order t satisfy this property, a filter is defined as producing a sequence which has exactly the ssame number of

- slots as its input with the sclectivity of the filter encoded in the fact that sume of the output slots arc emply.

'The sclected values remain in the same slots as in the input sequence. In order to make this work, loop
expressions arc defined as simply not operating on empty slots. ‘This can be seen in the definitions of the
various sequence functions and meta sequence functions presented above. ‘The following general statement

- can be made: A given lvop subexpression is only executed on those cycles of the loop when values are available

Jor all of the sequences it refers to. _

In order 0 appreciate the full impact of the definition of how filters operate, one must consider loop
expressions involving scveral scquences. Consider the program LIST-EVEN-SQUARES. [t takes in a list and
returns a list. ‘The output list contains an entry corresponding to each even number in the input. Each eatry
consists of the number followed by its square. For example when passed the argument (1 2 3 4) the
program will produce the output ((2 4) (4 18)).

(defun 1ist-even-squares (1ist)
(1etS ((integers (Elist 11st)))

(R1ist (1ist (filterS #'avenp integers)
(* integers integers)))))

In the program, the function LIST is implicitly MAPScd over two sequences. The first is gencrated by
cnumerating the elements in the input and sclecting the cven clements (eg.. [2 . 4]). The sccond is
gencrated by squaring all of the elements in the list (e.g. [1 4 9 16]). The registration between the two
sequences is maintained by the fact that the missing clements in the filtered sequence are represented as
empty slots. The function LIST is only executed when values arc available in both sequences i.c., only for
even clements of the list. ‘The output of the implicit MAPS is a scquence which has values in it corresponding
to the times when LIST was exccuted (8., [.(24) _(4 16)]). When RLIST reduces this sequence Lo a list it
ignores these empty slots,

The registration property makes loop cxpressions casy to understand and comipile: however, it is
significantly restrictive. The key linitation is that there are a number of quite logical operations on scguences
which cannot be supported. In particular, operations which disturb the ordering of the slots are prohibited.

PEAELTS 22 Miay B Suuiy 2 . Ll a T W W AT ey

The Element at a Time Metaphor -16- Waters

For cxample, merging sequences, concatenating scquences, changing the order in a sequence (c.g., reversing
it), etc. Such complex operations are not supported because the overhead assaciated with supporting them is
not warranted by the rather infrequent need for them. When they are necded, other loop representations
should be used.

Termination

As discussed above, termination presents problems from the point of view of the expressional metaphor.
A loop expression is defined to ierminate as soon as the shortest sequence in the expression is exhausted. This
dcfinition really only makes sense from the point of view of the clement at a time metaphor. From the paint
of view of the latter metaphor, a loop cxpression is executed by computing all of the sequences in it in paraliel
an clement at a time. "The loop stops as soon as any sequence runs out of clements.

“An interesting aspect of termination is the way it interacts with the registration property. Suppuse, for
examplc, that filters produced sequences of reduced length as their output. In this situation, a filter might
well produce as the third and final clement of its output the sixth clement of its input. The definition of
termination above would require that the loop stop after three cycles. However. this is a contradiction
because the loop must run for at least six cycles in order to generate the sixth input to the filter so that the
filter can produce its third output.

Note that all of the sequence functions and meta sequence functions (with the exception of TRUNCATES)
are carcfully restricted so that the lengths of their output sequences (if any) arc cxactly the same as the
minimum of the lengths of their input sequences (if any). This is done so that truncators will be the only
scquence functions which ever trigger termination, As a result, reasoning about termination can focus on the
truncators in a loop. ' '

At-start, At-end, & At-unwind

In addition to clement at a time computation on sequenccs, many sequence functions specify initializing
computation which is performed before the loop as a whole gets underway and/or cpilog computation which
occurs after the main body of the loop has terminatcd. Three additional meta sequence functions are
provided which make it possible for users to specify computation to be performed at these times.

The meta sequence function (AT-END function arg...) specifies that function should be exccuted afier the
loop terminates. Al of the args and any free variables referenced by finction must hold unitary valucs. The
value produced by applying function to args is returned as the unitary valuc of the form as a whole. As an
cxample, consider the following definition of RLIST. A reducer is used to CONS together the items in the
input scquence. After the reduction is completed. the function NREVERSE is uscd to reverse the order of the
list so that the correct result is returned.

(defunS R1ist (&sequence items)
(at-end #'nreverse (reduceS #'xcons nil items)))

p The mets sequence function (AT -UNWIND firnction arg...) is just like AT~END cxcept for two things. First,
. it produces no result at all. 1t is exceuted for side-cffect only. Sccond, it will be executed no matter how the
loop is terminated. ‘The next section describes several situations in which unusual loup exits prevent AT-END
- computation from being performed. As an cxample of AT-UNWIND, consider the fullowing definition of
x RFILE. A unitary auxiliary variable is used to hold the file object which is opened to receive the output. This
file is closed when the output is completed. AT-UNWIND is used because it is important 1o close the file no
matter how the loop is exited. Note that AT-END is used to specify that ¥ should be returned as the result of
RFILE. ! .

...........

5 C
o~ . . ' . N J
. X Waters -17- I'he Element at a Time Metaphor ;
;
if h (defunsS Rf1fo (name dsequence items &aux dunitary (file (open name ‘out))) X
(at-unwind #'(1ambda () (close file))) o
{« (mapS #'(1ambda (item) n
X3 (et (prinlevel prinlength))
X (print item file)))
: items) _]
-~ (at-end #'(lambda () T))) B
- The meta scquence function (AT-START fimction arg...) is exactly the same as AT-END cxcept that
. Junction is exccuted before the loop begins rather than afler it terminates. ‘The initialization of the auxiliary
oh variable FILE in RFILE is an implicit cxample of AT-START computation. [t could be made explicit as
e follows:
bﬂ (defunS Rfile-explicit-at-start (name &sequence items &aux &unitary file)
\ (at-start #°'(lambda () (setq file (open name 'out))))
s (at-unwind #'(tambda () (close file)))
N (mapS #'(lambda (item)
N (Yet (prinlevel prinlength)
o (print item file)))
items)
] (at-end #'(1ambda () T)))
- The examples above illustratc the most important use of AT-START. AT-END, and AT-UNVIND. They arc
used to include initializing and cpilog computation as part of an individual sequence function. This cxtends
i the range of loop computation fragments which can be expressed as sequence functions. For cxample, RFILE
2 L T would be conceptually much less uscfut if it did not encapsulate the actions of opening and closing the file
N - into the same unit with printing out the objects, '
. The program PRINT-LIST-SUM illustrates the use of AT-START and AT-END inside of a LETS. The first
g linc in the body of the LETS is executed only once at the start of the loop and prints a heading. ‘The last line is
E exccuted only once at the end and prints the sum. ‘The middle two lines arc exccuted on every cycle of the
loup and print out the integers in the list separated by spaces,
pt (defun print-1ist-sum (11st)
(TetS ((x (Elist 11ist)))
-3 (at-start #°'(Vambda () (format T "~XIntegers: ")))
i (mapS #'(lambda (z) (format T "~D" 2)) «x) .
o (mapS #'(lambda () (format ¥ " “)))
" (at-end #'(lambda (z) (format T "~XTheir Sum: ~D~X" 2)) (Rsum x))))
- The output produced by (print-11at-sum '(1 2 3 4))
o Integers: 12 3 4
- Their Sum: 10
2N
b
;:{:f-::.\‘::::--.j.;'._‘-':Z;.-.‘-:.:.'_.:.'.:v:l'-‘_.f T T L T T S . T,
o TR SR SO

P I B a0 i ARl R g AP gt SUas i ----—.l!u'. CAE Y -
.,

The Flement at a 'l‘in:nc Metaph&r -18- Watcrs'

In order to make it casicr to write kops like the one above, the rule for implicit MAPS introduction is
extended by saying that every top kevel unitary expression in a LETS or DEFUNS body is MAPScd if pussible.
‘The only time it is not possible is if (like the last line of the LETS below) the expression refers o a value which
is producced by a reducer and therefore not available until after the loop is complcted. In this case, AT-END is
imiplicitly introduced. Note that neither AT-START nor AT-UNWIND is cver implicitly introduced.

(defun print-1ist-sum-implicit (V1ist)
(format T "~XIntegers:)
(1etS ((x (EVist 1ist)))
(format T “~D" x)
(format T " ")
(format T "~XTheir Sum: ~D~X" (Rsum x))))

Looking at the program PRINT-LIST-SUM- IMPLICIT above (which is cxactly equivalent to PRINT-LIST-
SUM) scveral points should be considered. The computation to be performed AT-START is simply placed
outside and before the LETS. The second line in the LETS is implicitly MAPScd cven though it refers to no
sequence values at all. The third line is imiplicitly AT-ENDed hecause it refers to the output of a reducer, It
should be noted that it is almost never necessary to actually write an explicit MAPS, AT-START, or AT-END.

Done

In addition to using the meta sequence function TRUNCATES to limit the fength of a scquchce. a loop can
also be terminated by executing the special form DONE. Corsider the program SUM-INITIAL. [t takes in a list
and adds up any initial group of numbers (c.g., (SUM-INITIAL '(1 2 A 4)) returns 3). The program
works by cnumcrating the clements in the list and summing them up. but terminating the loop as soon as a
non-number is encountered. The form (DONE) causes the immediately enclosing loop to terminate normally —
~ any AT-END loop computation which has been specified is performed, and the return value which is
specificd by the last line is returncd (here the sum). Note that DONE only makes sense from the point of view
of the clement at a time metaphor, it does not fit into the expressional metaphor at all.

(defun sum-intttal (11st)
(1etS ((x (EYist 1ist)))
(cond ((not (numberp x)) (done)))
{Rsum x)))

DONE can also be called with one or more arguments. In this case the loop is immediately terminated and
the specificd values are returned. When DONE is used in this-way, it overrides the outputs specified in the last
linc of the LETS and any AT -END computations are not performed. An example of this usc of DONE is shown
in the program FIND-POSITIVE which rcturns the first positive number in a list.

(defun find-positive (1ist)
(1etS ((x (E11st 11st)))
(cond ((plusp x) (done x}))))

The use of DONE is also illustrated by the following sequence functions. The sequence function ROR
computes the OR of a sequence in e obvious way by successively ORing cach value into a state variable. The
first non-N1L value cncountered is returned. The sequence function ROR-FAST also returns the first non-NIL
value encountered; however, it causes the loop as a whole to terminate as soon as this value is found. Note
the way the DONE overrides the NIL which is retumed AT-END if no non-NIL items are found.

maslestncafionsliuesinsdioedion Susing. . Aendendinnde N WP N Gy) [P NI U YR R P PSR SR Y PR AP I PP

LA

Waters -19- The Element at a Time Métaphor

(defunS Ror (&sequence item)
(reduceS #'or nil 1item))

(defunS Ror-fast (&sequence item)
(cond (item (done item)))
(at-end #'(1ambda () nil)))

In general, ROR-FAST is mure cfficient than ROR:; however, when you use it you must consider the cffect
that it will have on the rest of the loop it is used in. For example, because its operation is peremptorily
terminated by the ROR-FAST, the program PRINT~LIST-OR-BUGGY ncither prints out all of the clements in
the list, nor prints out the summary linc AT-END. In order to operate as intended, it necds to usc ROR instead
of ROR-FAST,

(defun print-1ist-or-buggy (1ist)
(format T “"~%Elements: ")
(1etS ((x (Elist 11st)))
(format T "~A " x)
(format T “~%Their Or: ~D~%* (Ror-fast x))))

The output produced by (print-1ist-or-buggy '(NIL A NIL B))
Elements: NIL A

It should be noted that you can cause the premature termination of a loop in other ways which are outside
the scope of the LETS macro package. For example, you can wrap the loop in a PROG and then do a RETURN
or 60 from inside the loop to outside the loop. (Note that the loop cxpression itself is implementcd by means
of a PROG. In the LispMachine version (but not the MacLisp vension), this PROG is named T in order to reduce
interference with uscr specificd RETURNs.) Similarly, you can do a THROW from inside the loop to some CATCH
outside the loop. An important aspect of these kinds of exits is that they do not cause normal termination of
the loop. No AT-END loop computation will be, run, and the return value is directly specificd by the RETURN
or THROW,

Restart

It is occasionally convenient to be able to restart a loop at the beginning. The function RESTARTY
reinitializcs the immediately enclosing loop and causes it to start cxecution again from the beginning. The use
of this function is llustrated in by the program RELAX,

~ (defun relax (graph function)
(1etS () .
(cond ((Ror (funcall function (Egraph graph))) (restart))))) .

The program RELAX takes in a graph and a function. ‘The function is assumed to take in a node of the
graph and perform some computation which may or may not result in sidc-effects which alter the node. If it
alters the node then the function returns T, otherwise it retums NIL. RELAX repetitively applics the function
to the nodes of the graph until the graph reaches a quiescent state where the nodes are no longer changing. A
typical cxample of the way RELAX could be used would be to propagate some information through the graph.

The program warks through multiple passcs over the graph. It is assumed that the sequence function
EGRAPH cnumcrales the nodes of the graph. In cach pass, the function is applied to all of the nodes in the
graph. ‘The program computces the OR of the results of all of these function applications. 1f any of them is T
then the loop is restarted in order to begin another pass over the graph.

'The Element at a Time Metaphor -20- ‘ -~ Waters

LetS

Each LETS form delincates the exact extent of a loop. All of the sequence expressions in it (including any
expressions specifying values for the scquence variables being bound) are combined together into a single
loop which is scparate from all othér loops. The requirement that the output of a LETS be a unitary value
results from the fact that the cach LETS is compiled into a separate loop and therefore cannot be allowed to
return a sequence into the surrounding environment,

LETS is defined to be a rigid boundary in order to better support the clement at a time metaphor. Each
LETS delincates a set of sequences which will be processed in paratlel. ‘This is important for clarifying
concepts such as AT-START and AT-END. In addition, as will be discussed in detail below, it is even more
important when considering side-cffects (such as input/output) and nested loops.

It is typical for LETS o be used for loops which have a very strong clement at a time flavor. In general,
heavy usc is made of implicit MAPS and AT-END in order to express these loops., ‘The prograrn INVENTORY-
REPORY below shows a typical cxample of using LETS for this kind of loop. ‘The program reads in a file of
inventory records and prints out a report. Fach record 8 a list of four ficlds: the name of the inventory item,
the quantity on hand, the minimum acceptable quantity on hand, and the unit price. For cach item the report
prints out its name, how many are on hand, and the valuation of these items bascd on the specificd price. ‘The
last line of the output reports the total valuation of all of the items. In addition to the ahove, the report prints
out a notification in front of cach item which is understacked indicating how many should be ordered.

Sample Inventory File Contents

("Widget" 8. 8. 20.8)
("Frob" 2. 9. 9.68)
("Thingy" 312. 40. 19.68)
("Dingus™ 0. 20. B8.28)
("Whatsit" 3. 1. §.67)

Resulting Printout
Inventory Report

Order? Name On Hand Valuation
Widget - 8 $164.00

Order: 7 Frob 2 $19.3¢6
3 Thingy 312 $6130.80
» Order: 20 Dingus 0 $0.00
- Order: 4 Whatsit 3 $17.01
4 Total Valuation: $6331.17°
5
¥ Looking at the loop in the program. note the use of destructuring and sequential assignment in the bound
‘_{ variable value pairs. In the first linc of the LETS, the scquence variable NAME is bound to a sequence of the
L) first ficld of cach record, the variablc QUANTITY is bound to a sequence of the second ficld of each record, etc.

‘The variable VALUATION is bound to a sequence of products of PRICE and QUANTITY,

FRA

T ET I

g

o was
0

AN i i A S A e~ s e A A b Mt e it et S SRS g P St Jeamt it il . At Jat e e .‘_.".'_*..'_«‘1
Waters ' -2]- The Element at a Time Mctaphor.

{defun inventory-report ()
(with-open-file (report "inventory.report” ':out)
(format report “~10T Inventory Report~2%")
(format report "Order? Name On Hand Valuation~%")
(1etS (((name quantity minimum price) (Efile "inventory.data"))
{valuation (8 price (float quantity))))
(cond ((>= quantity minimum) (format report "~10X"))
(T (format report "Order: ~3D" (- minimum quantity))))
(format report "~X~10A~4D~2X~10<¢$~§~>~%" name quantity valuation)
(format report "-%~11XTotal vValuation:~-10<$~3~>" (Rsum$ valuatian)))))

‘The body of the LETS prints the main part of the actual report. ‘The first form prints the ordering
notifications. It comparcs the quantity in stock with the minimum required and prints out the number to be
ordered if the quantity is less than the minimum. The second form prints the main information about cach
inventory item. (Note that the FORMAT function is a Lisp function for creating formatted output. 1.ike the
Fortran coastruct it is modeled after. it is inscrutable but convenicnt.) Both of the first two forms in the body
arc implicitly MAPScd. ‘The third form prints out the summary linc at the end of the report. It is only
exccuted once at the end of the loop because it uses the unitary output of the reducer RSUMS (floating point
sum).

An important thing to note about INVENTORY -REPORT is that although the pracess of actually printing out
the report (i.c., opening the file, printing some initial lines, printing a group of internal lines, printing a final
line, and then closing the file) is clearly a logically identifiable loop fragment, it is not represented as a
scquence function. The problem is that, unlike the simpler actions represented by RFILE, there arc So many
ways in which the items to be printed, and the format for printing them, can vary that there is very little

" constant structure which could be captured in a sequence function. Basically, the only thing which is
common between different instances of this fragment is opening and closing the file which is alrcady captured
in the form WITH-OPEN~FILE, ‘

A key aspect of LETS is that even though the operation of actually printing the report arc not represented
as a sequence function, LETS makes it possible for them o be convenicntly expressed. This is done in
basically the same way that it would be done in an ordinary looping notation i.c., by distributing the parts of
the computation into places where they will be exccuted in the correct situations. It must be said that this
makes this particular fragment no casicr to understand than it would be in an ordinary looping notation.
However, the loop as a whole is morc understandable because much of the computation is represented
concisely in terms of sequence functions. The ability to mix computations which are not specified as sequence
functions into a loop expression is another important capability which is fucilitated by the clement at a time
metaphor. The issue of the kinds of loop fragments which cannot be represented will be discussed more fully
in the section on the domain of applicability of the expressional loop notation.

Side-Effects

The behavior of side-cffect producing operations (such as input/output) in a loop expression can only be
understood from the point of vicw of the clement at a time metaphor. ‘Uhis is another important reason why
this metaphor is made a prominent part of the description of the notation.

The cdmpilation process is constrained so that the order of exccution in the loop produced is rigidly linked
o the lexical order of expressions in the original loop cxpression. As a result, it is relatively casy to predict the
consequences of side-cffects as Jong as you bear in mind the fuct that processing is occurring an clement at a
time so that the sidc-cffect operations are interleaved and that cach one is executed many times. Consider the
program INVENTORY-REPORT above, ‘The two main output statements are cach exccuted once on cach cycle

Ty

le.

WL TT e

The Element at a Titne Metaphor -0- Waters

of the loop. The final output staiement is exceuted only once after the loops terminates.

Notc that the requirement that every unitary expression in a LETS be MAPSed if possible was introduced in
order to make side-cffects casier 1o understand. One might have said that an expression which ncither uses
nor produces sequence values should not be MAPScd since its vatue cunnot change on different cycles of the
loop. However, this would be missing the fact that if it has a side-effect (such as output to a file) this effect is
probably desired on every cycle of the loop. A programmer can use AT-START in order to specify that
somcthing should only be executed once.

Must side-effects interact with the expressional notation in straightforward ways and can casily be
understoad as outlined above, However, there are some situations where things are not so clear.

Side-Effects and Termination

In order to understand how side-cffects interact with termination, one has to be aware of exactly when
termination will occur. For example, consider the program PRINT-LIST below. This function prints all of
the items in a list preceding cach one with an index of its position in the list.

(dafun print-list (11st)
(1etS ((1 (generateS #'1+ 1))
(x (Elist 1ist)))

(format T "~%Item ~D:" §) -
(format T " ~A" x})) :

The output produced by (print-1ist (A B C)):

Item 1: A
Item 2: 8
Item 3: €
‘There is onc potential pitfall which the uscr must be aware of. A loop is terminated immediately upon
discovering that one of the scquences has been exhausted. As a result of this, unless the termination test
happened to be the first thing executed on that cycle of the loop, some things will get executed on that Jast
cycle, and others will not. In particular, all and only those cxpressions which Iexically precede the termination
will be exceuted. For examplc, consider the program PRINT-LIST~BUGGY. (Note that although no sequence
variables arc bound, a LETS is required in this program in order to specify that the two FORMATS should be
executed in a single loop instead of in two separate loops. The LETS also specifics that the FORMATs should be
MAPScd.)
(defun print-list-buggy (11st)"
(1etS ()

(format T "~%Item ~D:" (generateS #'i+ 1))
(format T " -A" (Elist 1ist))))

The output produced by (print-11st-buggy '(A 8 C)):

Item 1: A
Item 2: 8
Item 3: C
Item 4:

‘This program docs not produce the same output as PRINT~LIST, The problem is that it docs not discover
that the list has been exhausted until after the first FORMAT has been cxccuted on the last cycle of the Inop.
Note that this problem cannot be avoided by any straightforward change 1o the definition of LETS. You
could not sav that nothing in a cycle will.be executed if any termination is triggered because some of the
computation may be necessary in order to compute when to terminate. On the other hand, you could not say
that everything will be executed on the cycic where termination occurs because typically some (or all) of the

T Sy A |

wrwr— PR s 0 A B e e St et aen "v_‘-‘~'v.‘-~v'“. Ba_ - A e A e e Dl AN R SN A e A

ters -23- " The Element at a Time Mctaphor

wutation afier the termination test will be in error if the test is true,

The programmer is capable of excreising control over this problem because, in the loop code which is
duced. cverything is cvaluated in the order in which it appears in the original loop expression. As a result,
: always possible for him to get the termination tests to oceur at the places he wants by correctly ordering
forms in the LETS. For example, the ELIST is merely placed before the first FORMAT in PRINT-LIST. As
sult, this is not really a severe problem; however, it is one to which the user must be sensitized.

On a deeper level, the real problem with PRINT-LIST-BUGGY is that neither it (nor for that nuatter PRINT-
i) makes the logical relationship between the two FORMATS explicit. The correct thing to do is to group
m together into a single forin as in the function PRINT-LIST-BEST.

(defun print-list-best (list)

(1etS ()
(format T "~XItem ~D: ~A" (generateS #'1+ 1) (Elist 11st))))

Side-Effects Between Sequence Functions

As mentioned above, the expressional notation attempts to maintain the property of decomposability of
p expressions whenever possible. An important feature of this is that any internal state variables of a
uence function arc hidden from view and cannot be maodified by SETQs, or the like, in a loop expression.
fortunately, side-cffect producing functions such as RPLACD are capable of modifying the values of state
iables without having to actually refer to the variables themselves. I such side-cffect functions are being
d, then the programmer must take care that this kind of problem does not arise.
‘The problem is illustrated by the program DASH-LIST-BUGGY. The purpose of this program is to take in a
(c.g.. (A B C))and put a dash after cach entry in it (c.g., to produce (A -~ 8 - C -)). It attempts to do
by side-cffect as follows. It enumerates cach of the sublists in the original list (c.g.. [(A B C)(BC)(QO)D)
splices in a dash afier the first element of cach sublist (e.g., producing [(A - BC)(B- C)(C-))).
(dsfun dash-11st-buggy (1ist)
{1etS ((sublist (Esublists 1ist)))
(rplacd sublist (cons ‘- (cdr sut,ist))))
1ist)
Particularly from the point of view of thc expressional metaphor, the above algorithm sounds very
isible; however, it doesn't work. What actually happens is that the program gocs into an infinite loop
sing in dashes after the first item in the input list. For example, if the loop starts with the list (A B €)
i the first sublist is (A 8 C). The RPLACD alters this sublist to (A ~ B C) and therefore the list itself to
- B C). So far this is all as intcnded. Unfortunately, an internal variable in ESUBLISTS has a pointer
the list in order to keep track of what sublist to enumerate. The list is altered before the sccond sublist is
ally cnumerated and as a result (< B C) gets cnumerated as the second sublist instead of (B C).
t is possible to construct a loop expression for this algorithm which will work more or less as intended.
example, the program DASH-LIST 1 combines everything into one cnumerator which cnumerates the next
ist before the RPLACD operation. Alternatively, DASH-LIST2 uscs a modified enumerator which makes
vances for the actions of the RPLACD.

PR VL IPUE I NN S AU P WP SO P - P U PP TP . e

Lar-an o 10 et oo aamer et b -t A~ S AP

-

The Element at a '{ime Metaphor -4- Watcrs

(defun dash-1ist1 (1ist)
(letS ()
(enumerateS #'null
#'(1ambda (1) (progl (cdr 1) (rplacd 1 (cons '~ (cdr 1)))))
1ist))
1ist)

(defun dash-1ist2 (1ist)
(1etS ((sublist (enumerateS #'null #'cddr list)))
(rplacd sublist (cons '~ (cdr sublist)))})
1ist)
Howcever, duc to the antagonistic interaction between the RPLACD and the enumerator, there is no acsthetic
way to express the stated algorithin using the expressional notation. As will be discussed in more detail below,
this is one of the kinds of algorithms for which the expressional notation is not intended to be used.

Conversions and Coercions

Two sequence functions are available for converting between unitary values and sequences: GSEQUENCE
which converts an object into an infinite sequence of that object, and RLAST which converts a sequence into a
unitary object by taking its last clement. 1t should be noted that the meta sequence function MAPS is like
GSEQUENCE in many ways. If passed a unitary object it will also create an infinite sequence of that object.
However, if you nest a unitary cxpression in MAPS it will be exccuted many times, while if you apply
GSEQUENCE to the expression it will be evaluated only once. For cxample, VECTOR-NCONS initializes a vector
by filling all of its slots with the samc CONS cell. In contrast, VECTOR-NCONSES fills cach slot with a different
CONS ccll. -

(defun vector-ncons (vector) . .
(Rvector vector (Gsequence (ncons nil1))))

(defun vector-nconses (vector)
(Rvector vector (mapS #'(lambda () (ncons nil)))))

In order to make things morc convenient for the user, automatic type coercions are applicd between
scquences and unitary values. The most important coercion has already been discussed. Whenever a unitary
expression is placed where a sequence value is required, MAPS is automatically introduced in order to convert
it into a sequence expression. Note that GSEQUENCE is never automatically introduced and therefore VECTOR-
NCONSES-IMPLICIT is cquivalent to VECTOR-NCONSES. and not to VECTOR~NCONS.

{defun vector-nconses-implicit (vector)
{Rvector vector {ncons nil)))

‘The places where sequence values arc required are the sequence arguments to sequence functions and the
xpressions o be bound to values in a LETS. These coercions are illustrated by the following pairs of
\quivalent loop expressions.

(Riist 1)
same as: (Riist (mapS #'(lambda () 1)))

(1etS ((x 1))
)

same as: (1é£§ {((x (mapS #'(1ambda () 1))))
)

In the reverse direction, whenever a sequence cxpression is placed where a unitary value is required,
ILAST is automatically introduced to convert it into a unitary value producing expression. The places where

%, Ry Ty =

. {

DIPUT)

Ry [N SELNL

)

MAPOALALEACEE

AT —

Waters -25- ‘The Element at a Time Mctaphor

unitary valucs arc required are the last expression in the body of a LETS and the value of loop cxpressions
which appcar in isolation in ordinary Lisp code. Fxamples arc shown below, '

(1etS ((x (Elist 1ist)))
: (mapS #'print x))
same as: (letS ((x (Elist 1ist)))
(R1ast (mapS #'print x)))

(mapS #'print (Elist x))
same as: (Rlast (mapS #'print (Elist x)))
Some of the other features of the expressional notatton could also be looked at as coercions, for cxample,
the automatic introduction of MAPS and AT-END around lincs of a LETS. “laken together, these coercions have
no scmantic import -~ they do not make it possible to express anything which could not be expressed without

- them. However, they do make it significantly more convenient to specity many kinds of loops.

Nested Loops

Like any looping notation, the expressional notation can be used to cxpress nested loops. Consider the
program SUM-LISTS-IN-LIST1, It takes in a list of lists of integers (e.g., ((1 2) (3 4)))and rcturns a list
of the sums of these lists (e.g.. (3 7)). The outer loop enumerates the lists of numbers in the list supplied as
the input to the function as a whole. The inner loop adds up the numbers in these sublists. The outer loop
then CONSces these numbers up into a list to be returned.

(defun sum-1isfs~in-14st1 (1ist-of-1ists)
(1etS ((entry (Elist 1ist-of-lists)))
(setq entry (mapS #'(lambda -(1)-(Rsum (Elist 1))) entry)).
(R1ist entry)))

In the program, MAPS is used to apply the inner loop to cach list of numbers in turn. ‘The LAMBDA used
with the MAPS delineates the boundary of the inner loop. This could also he done by wrapping a LETS around
the inner loop (which.would then be implicitly MAPSed) as in SUM-LISTS-IN-LIST2,

: .,wfuh sum-1ists~in-11st2 (11st-of-1ists)

(1etS ((entry (EVlist list-of-1ists)))
(setg eatry (letS () (Rsum (Elist entry))))
(R1ist entry)))

Though relatively clear, both of the above programs are somewhat cumbersome in appearance. If the
(RSUM (ELIST ...)) werc in isolatien, there would be no need to wrap it in cither a MAPS or LETS. The
same is truc here. The algorithm can be more conveniently expressed as shown in SUM-LISTS-IN-LIST3.

(defun sum-1ists-in-1ist3 (1ist-of-11sts)
(1etS ((entry (E1ist 1ist-of-1ists)))
(setq entry (Rsum (Elist entry)))

(R1ist entry)))

Note that from the point of view of the clement at a time metaphor, the body of the LETS is describing
what happens to a typical valuc of ENTRY, This typical valuc is unitary and therefore it makes perfect sense to
say that (RSUM (ELIST ...)) is applied to it. However, as written, the loop expression contains type
conflicts. 'The sequence ENTRY is supplied where ELIST expects a unitary input, and the unitary output of
RSUM is assigned to the sequence ENTRY. In order to deal with this, an automatic conversion is applicd which
parses cach loop expression looking for matched pairs of type conflicts like these. These conflicts are then
resolved by separating out a nested loop which is MAPSed over the input scquence,

Unfortunately, there arc several major problems involved with the automatic introduction of nested loops

‘Ihe Element at a Time Metaphor -26- ' : - Waters

as described above, ‘The first is that although the third version of the program above is arguably more
readable than the first two versions, the process of representing a loop more and more compactly can casily by
curried to excess. For example, the next two versions of the program are more compact and specify exactly
the same computation, However, it is questionable whether they are casier to understand. Going beyond
this, more complex programs (such as triplely nested loops) become virtually incomprehensible if rendered in
such a dense expressional style.

(defun sum-11ists-in-1ist4 (list-of-11sts)

(letS ((entry (Elist 1ist-of-1ists)))
(R1ist (Rsum (Elist entry)))))

(defun sum-1ists-in-1ist5 (list-of-11ists)
(Rlist (Rsum (Elist (El1ist list-of-1ists)))))

Another problem with the automatic ercation of nested loops is that although the required parsing is trivial
in simple cases like the above, it is unfortunately quite complex in the general case. One reason for this is that
there is considerable interaction with the type coercion processes described above. Another stems from the
fact that parsing also has to deal with the related phenomenon illustrated in the progriam SUM-COPY-OF -LIST
below. This program copics a list of integers and then computes the sum of the integers. Note that there are
no type conflicts in this program, and that the initial copying of the list is not a nested loop. [t is exccuted in
its entirety before the summiation loop begins. Nevertheless, the copying loop has to be located and scparated
from the rest of the loup since it is computed separately. The need to do this further complicates the parsing
process. Al in all the parsing/cocrcion process ends up being by far the most complex part of the
comilation process, .

{defun sum-copy-of-1ist (11st)
(Rsum (Elist (Rlist (Elist 11st)))))

A much bigger problem with the automatic introduction of nested loops is that the complex interactions
with other cocrcions are not just hidden inside the compilation process -- they can lead to considerable
confusion regarding scemingly simple loop expressions. For example, consider the program ZERO-MATRIX,
As rendered below it has a simple explicit nested loop which scts all of the clements of an array to zero. If one
tries to express this more compactly, things rapidly become complicated.

(defun zero~matrix (A)
(1etS ((i (Erange 0 (1~ (array-dimension-n 1 2)

(1etS ((j (Erange 0 (1~ (array-dimension-n
(aset 0 A 1 j))))

)
)

The variable J is only used once in the inner loop. so the programn ZERO-MATRIX-NO-J is cquivalent to
ZERO-MATRIX. Howcver, if you omit the inner LETS as in ZERO-MATRIX~BUGGY you no Jonger have an
cquivalent program. ‘This program is is not equivalent to ZERO-MATRIX, but rather to ZERQ-DIAGONAL.

v

i) RN

r . Lre
At v -

ey
s e

cLvems s T
Jeote eyt

RS

il

TveTLvVy RORTE EIEIRNVY

v

—TTV XY

Waters ' ‘ -27- The Flement at a Time Mctaphor -

(defun zero-matrix-no-j (A)
(\?:stg(z)(Erango 0 (1- (array-dimension-n 1 A)))))
]
(aset 0 A i (Erange D (1~ (array-dimension-n 2 A)))))))

(defun zero-matrix-buggy (A)
(1etS ((1 (Erange 0 (1- (array-dimension-n 1 A)))))
(aset 0 A i (Erange 0 (1- (array-dimension-n 2 A))))))

(defun 2ero-diagonal (A)
(1etS ()
(aset 0 A (Erange 0 (1- (array-dimension-n 1 A})))
(Erange 0 (1~ (array-dimension-n 2 A))))))

“The problem is that there is a considerable amount of coercion going on in ZERO-MATRIX-NO-J which is
no Jonger forced in ZERO-MATRIX~BUGGY. In particular: the ASET is MAPScd over the sequence created by the
inner ERANGE; in conjunction with this MAPS, cach individual valuc of 1 is in cffect converted into a sequence
of identical values; and RLAST is uscd to convert the scquence of values created by the MAPScd ASET into a
unitary return value. In ZERO-MATRIX-BUGGY cverything can be inierpreted much more simply by assuming
that the two ERANGES are being exccuted in parallel, It is a gencral feature of LETS that it only creates nested
loops when it is absolutely necessary - it always trics to combine cverything in its body into a single loop.

Given the difficultics it causcs, the Obvious question is why support the automatic introduction of nested

loops? The problem is that the simplc cascs of implicitly nested loops arc so logically compelling that they

cannot be ignored. It scems to be an obvious benefit to be able to usc a simple loop expression (such as
(RSUM (ELIST X))) in isolation in a program. Add to this the fact that the clement at a time mctaphor
suggests thinking about the interior of a loop as a specification for what happens to typical (unitary) valucs of
the sequences in it, and programs likc SUM-LISTS-IN-L1ST3 scem too rcasonablc to prohibit.

A Large Example

To conclude the description of the features of the expressional loop notation, this scction presents a larger
cxample. The example is a data abstraction which implements scts of symbols as bit vectors. The abstraction

" not only makes available some ordmary functions for opcrating on these sets, but some sequence functions as

well,
Sets are represented as bits packed into a singlc integer. The size of the sets is limited by the number of

bits in an integer (e.g.. 24 bits on the LispMachine). The global variable «BSET-DOMAINe stores the

correspondence between potential set elements and bit positions. This mapping is represented by a vector of
CONSes. ‘The index of a CONS in the vector indicates the bit position which is being described. The CAR of the
CONS holds the symbol which corresponds to the bit position. The COR of the CONS holds the representation
for a sct which has only that one symbol in it (i.c., an integer with only the one corresponding bit on). The
variablc »BSET-DOMAINs is initializcd: to a vector of conscs of NIL and the appropriate single clement sets.
Notc that the unit scts are created by a special gencrator which starts with an integer with a 1 in bit position 0
and then rotates this bit around from position to position.
(defvar ebset-domaine

(Rvector (array nil T 24) (cons nil (generateS #'(lambda (x) (rot x 1)) 1)))
“"The bset domain element mapping.")

‘The global variable ¢BSET-INDEXe keeps track of the largest bit position used so far. The number -1 is
used to represent the fact that no bit positions have been used yet.

e
.
-

L PO

»
1

- R . , o
; . PRI PR A S
P S A A

it PR NIRRT RN

. Ta .

R - o anctadiva, [B e b ot At Mt e Ml S S A e i TR A S P s A e i e e e s W TR TR NNV A Ve T N, WL e e

i ‘7:
: 3
t

0
*
.

. ‘I'he Element at a Time Mctaphor -28- Waters i-
) o

(defvar ebset-indexs -1 "The largest bit position used so far.") T'

The function BSET-RESET is used to reinitialize thesc variables. 1t MAPScs over the vector in «BSET- '-

DOMAINs sctting the CAR of cach CONS cell to NIL, and scts «BSET-INDEXe to -1, =

3

»!

(defun bset-reset ()
(1etS ((item (Evector ebset-~domaine)))
{setf (car item) nil}))
(setq sbset-indexe -1))

-

o
3
o
e
(X
-~

‘The function BSET-UNITSET takes in a symbol and returns the unit set corresponding to it. It issues an
crror if the symbol is not representable as a unit sct (i.c., if it is not in the vector +BSET-DOMAINe). It uses
ROR-FAST (which as described above, computes the OR of the items in a scquence, stopping as soon as a
non-NIL item is encountered) in order to look for the symbol in «BSET-DOMAINe returning the corresponding
unit set as soon as it is found. Note that the COND in the ROR-FAST is implicitly MAPSed.

(defun bset-unitset (symbol)

(or (1etS ((item (Evector ebset-domaine 0 ebset-indexe))) g
(Ror-fast (cond ((eq (car item) symbol) (cdr item))))) o7
(error "symbol not in bset domain" symbol))) =
The function BSET~ADD-DOMAIN-ELEMENT takes a symbol and cnters it in «BSET-DOMAIN« so that it can ,‘:
be used in the bit vector scts. If the symbol is not already in the domain, and if there is an available bit 3
position, then the program increments «BSET-INDEXs and stores the symbol in the appropriatc CONS cell in S
+BSET-DOMAINe,) ;QJ
.) Ca .- 4

(defun bset-add-domain-elemant (symbol) ‘ L
(cond ((Ror-fast (eq symbol (car (Evector ebset-domaine 0 ebset-indexe))))) "

((> ebset-indexs 22) (error "bset domain size exceeded” nil))
(T (incf ebset-indexe)
(setf (car (aref shset-domaine ebset-indexe)) symbol})))

As cxamples of the kind of ordinary functions which would be implemented as part of the data abstraction b i
consider the following four. The first three are cxamples of the operations for which the bit vector - |
implementation is particularly cfficient. Intersection, unjon, and the test for cquality between two seis can all Y
be implemented as single operations independent of how many symbols arc in the sets operated on. 3

(defun bset-intersect (bsetl bset2) S
(logand bsetl bset2)) p“

(defun bset-union (bsetl bset2) ' 1
(logior bsetl bset2))

(defun bset-equal (bsetl bset2)
(= bsetl bset2)) B

{defun bset-mem (symbol bset)
(not (zerop (bset-intersect (bset-unitset symbol) bset))))

The next four definitions are examplces of the kind of sequence functions which would be provided as part
of the data abstraction. The first two implement reducers which can be used 10 take the intersection and

X union of sequences of bit vector sets. The third (EBSET) takes in a bit vector set and creates a scquence of the e
,3 symbols in that set. ‘The last (RBSET) performs the inverse operation, taking in a sequence of symbols and - v
:3 crcating 4 set by taking the union of the correspunding unit sets. -1
5 : .
3 * . N
- -
S A
A v

— i st i Sl 3

Waters -29- ' The Element at a 'l'ime Mctaphor

(defunS Rbs;t-1ntorsoct (&sequence bset)
(reduceS #'(Yambda (x) (bset-intersect x bset)) -1))

{defunS Rbset-union (&sequence bset)
(reduceS #'(lambda (x) (bset-union x bset)) 0))

(defunS Ebset (bset)
(car (f1lterS #'(1ambda (x) (not (zerop (bset-intersect (cdr x) bset))))
(Evector esbsat-domaine O ebset-indexe))))

(defunS Rbset (&sequence symbol)
(Rbset-union (bset-unitset symbol)))

The example above is a particularly good one in that it shows the expressional notation being used to
represent a varicty of loops which are small and simple. This is the application for which the notation has
been specifically designed.,

~ -

00 PEERERE

AT e At At g

S €

- P . N - N . R SR - e T . O SR
P PRI LIRS - AT RTY 2) > L Y re Payears 2 S = 2 I U U W VD NP SR g | - 4 - - Fru. B bon B oo N o o P 2 LR S}

Evaluating the Expressional Noﬁtion -30- Waters

II - Evaluating the Expressional Notation

Onc way to summarize the expressional loop notation is as a collection of basic ideas. Iirst, there are three
themes which underlie the notation.

The [xpressional Metaphor - The idea that loops can be cxpressed as compositions of fragments of
louping behavior is the fundamental motivation behind the notation.

The Element at a Time Metaphor - The additional metaphor that a loop can be conveniently specified
as a sct of operations on typical clements also underlics the notation as a whole,

Ejficient Compilation - From the beginning, it was decided that it had to be possible to compile the
nutation into cfficient looping code. This offected many of the design decisions.

"There are six basic features of the notation which together support these themes.

Sequence Functions - These embody the fundamental notion of a fragment of looping behavior. ‘The
fact that they look and can be reasoned about essentially just like ordinary functions supports the
expressional metaphor. Restrictions on the kinds of scquence functions allowed (c.g., the
requirement for registration between clements of their inputs and outputs) support the clement at a
time metaphor and cfficicnt comipilation.

Segquences - These are the mode of communication between sequence functions. The fact that they
look like and can be reasoned about much of the time just like ordinary aggregate data objects
supparts the expressional metaphor, ‘The fact that they are defined to be one dimensional scries of
slots containing unitary values where each slot corresponds to one cycle of the loop which will
eventually be produced is the fundamental underpinning for the clement at a time metaphor and is
esscntial for etficient compilation.

User Definition of Scquence Functions - The fact that the user can definc his own sequence functions in
analogy with the definition of ordinary functions greatly extends the utility of the notation.

Meta Sequence Functions- These make it possible to specify new kinds of operations on sequences.
On the one hand, they provide a very convenient mechanism for this specification. One the other
hand. they embody the restrictions which are necessary in order to insurc that it will be possible to
efficicntly compile the specified operations. In this context it is important that the notation does not
provide any more general method for specifying sequence computations.

loop Fxpression Blocks-Calls on LETS scrve two basic purposes: dclincating groups of loop
expressions which arc to be combined into a singie loop, and supporting the notion of variables
which have sequences as their values. The body of such a block is the place where the clement at a
time metaphor is most promninent.

Cuercions - The cxistence of coercions such as the automatic introduction of MAPS is an important
undcrpinning for the element al a time metaphor. Other cocrcions such as the detection of nested
loops and automatic conversions between sequences and unitary values cxist mercly as a
convenience for the user. Note that in order to make the above coercions practical, variables
containing sequences have to be readily identifiable as such.

In order to investigate the cfficacy of the expressional loop notation as a whole, one must look at it from
several points of view. In particular, one must evaluate the kind of loops it can be applicd to, how efficiently
it can be cxccuted, and how casily it could be applied to other languages besides Lisp.

Bl

]
LY

ree

LARA e
et ,,’

v
S

. " 4
R ‘ A A .
DRI q: [
o PRI R
RN LT]

LR SR -a b ach Leve A L e eyt Cam e m L Tanl - 3Pl arY

Waters -31- Evatuating the Expressional Notation

Domain of Applicability

‘The expressional loop notation is oriented towards the kinds of straightforward loops which are most
comimon, In order to make it casier to cxpress these loops, it deliberately sacrifices more genceral applicability,
As a result, there are a number of situations where the expressional notation is pot appropriatc,

"The basic approach of the notation is to express a loop as a composition of fragments of looping behavior
represented as sequence functions. There are two main situations in which this approach is ineffective: when
a loop cannot be scparated into multiple fragments, and when the notion of a sequence fuaction is not

. capable of expressing the required fragments.,

It is quite possiblc that ¢ven a large loop will not be decomposable into fragments. In order to break a
loop down into two fragments A and B, it must be the case that A and B are both self contained units. In
particular this means that there can be no interaction between A and B other than data flow from A to B. Note
that there cannot be any data flow from B to A. In some loops, all of the computation is linked together in a
light net of data flow. in that case it cannot be decomposed. For example, consider the program BINARY-
MEM which tests whether a given integer is in a sorted vector of integers by doing a binary scarch.

(defun binary-mem (integer vector)
{prog (left mid right item)
(setq left 0)
(setq right (1- (array-length vector)))
L (cond ((> left right) (return nil)))
(setq mid (// (+ left right) 2))
(setq item (aref vector mid))
(cond ((> item integer) (setq right (1- mid)))

((< item integer) .(setq left (1+ mid)))
(T (return T)})

(go L))

‘The program cannot be decomposed into a composition of fragments because cach part affects every other
part. The values of LEFT and RIGHT are used to compute MID which is used to compute TTEM which is used in
a test which determines the next values of LEFT and RIGHT. Because it cannot be decomposed, there is no
way to write the program any more clearly using the cxpressional notation. The best that could be done
would be to write the program as one huge sequence function.

Often side-effects tie together parts of a loop which might appear to he separable. An example of thn was
shown in the section on side-cffects above, ‘T'he basic algorithm presented there for adding dashes into a list
cannot be decomposed because the RPLACDs perforned on the sublists which are cnumerated maodifies the
state of the enumerator. 'The only solutions are cither to represent the program as a single fragment as in

'DASH-LIST1, or to writc a program like DASH-LIST2 where the loop appears to have been decomposed but

actually has not. Both approaches are unsatisfactory. Neither program is particularly casy to understand, and
the second program violates the basic spirit of the cxpressional notation. It would be better to refrain from
using the expressional notation for this kind of program.

"I'he expressional loop notation is also limited in the kind of loop fragments which it can represent. As
described above, one arca of limitation is a result of the simple notion of sequence which underlies the
notation. This makes it impossible to express fragments which alter the order of clements in a sequence or
which merge sequences,

‘The only facilitics available for creating fragments arc the meta sequence functions. Fxpericnce has shown
that these are capable of creating a wide range of uscful fragments. However. there are a varicty of plausible
fragments which cannot be created. Jor cxample, ENUMERATES always creates fragments where the
termination test is performed at the start of cach cycle of the loop. It is not possible to create a fragment
where the termination test is performed at the end of each cycle.

. . A LR N EE - . L.
LN W T ST PO Wt UUIE YA W S SUUr T S W Y REPWE IO L - S SR S S

Catt Sadl it S Saast aue sache Shwe Saye age e S

Evaluating the Expressional Notation -32- ‘ Waters

N

Another example of a fragmment that cannot be represented as a sequence function is the idea of doing 4
output to a report file as discussed above in conjunction with the program INVENTORY-REPORT. An ' : ‘_1
important thing to natice from that example however, is that LETS muakes it possible to combine a fragment .

like this one with a loop in expressional notation, "This considerably extends the domain of applicability of "y
the notation. A vital feature of this is that the notation acts 1o protect the semantic integrity of the standard
fragments when a non-standard fragment is added. The primary way it docs this is by hiding the internal state
variables of the standard fragments, so that non-standard fragments cannot modify them.

Another more fundamental reason why the expressional loop notation may not be appropriate is that some .;3
other paradigm may be mare appropriate. VFor example, consider the function GCD. Writing it as a recursive 1
program makes it very casy to understand because the structure of the program exactly mirrors the structure
of the standard proof of correctness for the algorithm. No iterative rendition would be as clear.,

(defun gcd (x y)

(cond ((< x y) (psetq x'y y x)))
(let ((r (remainder x y)))

(cond ((zerop r) y)
(T (ged y r)))))
In addition, it should be noted that unlike some looping notations the expressional notation does not
handle amything but simple loops. For example, it does not support multiple cnury points nor, by itsclf, exits
to multiple points.

Efficient Execution

‘There arc two principal ways in which the expressional notation could be exceuted: direct execution, and
conversion to iterative lvops. "The most straightforward way would be to just implement sequences as normal
data objects and the sequence functions as normal functions. Loop expressions could then be evaluated just
like any other expressions. This direct éxecution approach is taken by APL[10). On the uther hand. a
compilation process can be uscd to convert loop expressions into ordinary iterative loops which operate in an
clement at a time fashion, "This conversion approach is used by LETS and the languages Hibol [12,13) and
Madel [11}

The main advantage of direct exccution is that it is casy to implement. In particular, it is very casy to see
how it directly supports the expressional metaphor, ‘The main disadvantage of direct exccution is that, in
comparison with ordinary iterative loops, it imposes very large time and sbacc overheads,

‘IThe main advantage of the conversion approach is that it is capable of creating very efficient code. In fuct

there is no reason in principle why there has to be any time or space overhead at all. ‘There arc, however, two
drawbacks to this approach. First, the conversion process can be quite complex. Just how complex depends
on exactly what facilities are supported by the notation. Second. the conversion process is fundamentally
related to the clement at a time viewpoint. As we have seen, duc to issues like tenmination and side-effects,
this viewpoint cannot be hidden from the user. As a result, the user has to keep this metaphor in mind as well
. as the simple expressional inctaphor,
{ When designing the expressional notation it was felt that the issuc of efficiency could not be ignored. Asa
_ result, the notation was designed from the beginning with conversion in mind. This had two major effects on
the design. First, whenever a potential feature of the notation would have unduly complicated the conversion
process it was discarded. Second. the eloment at a time metaphor was introduced as an eaplicit part of the
motivation behind the notation. These precepts resulted in a notation which is in fact relatively
straighttorward to compile into efficient code.

The LETS macro package implements the notation using a straightforward set of macros which convert

P - P N G S T Y

Waters | -33- Evaluating the Expressional Notation

cach expression into an ordinary loop. No explicit representation for a sequence is cver required. ‘The
compilation process is described in detail in Appendix B. The next few paragraphs outline the major features
of the process.

Each sequence function is represented by a data structure specifying some initialization computation to
perform before the loop begins, some inside computation to perform repetitively on cuch cycle of the loop,
and sume cpilog computation to perform afier the loop terminates.

A compasition of two scquence functions “(A (B . ..))" is compiled by combining their parts together
into a new compound scquence function. The resulting indtialization, insides. and cpilog are derived by
concatenating the corresponding parts of B and A. ‘The data flow from B (o A js implemented by data flow
from the insidc part of B to the inside part of A in the new compound inside part.

When a loop expression is encountered, it is first parsed in order to locate all of the sequence functions in
it. The meta sequence functions are implemented as macros which take their functional arguments and create
an appropriate sequence function. As part of the parsing proccsé. implicit MAPS introduction and other
cocrcions are introduced. The Joop expression is then compiled by combining all of the sequence functions in
it together. Once this has been done, the resulting fragment is converted into an actual loop with the
indicated parts.

Returning to a discussion of alternate implementation strategics, it should be noted that in order for direct
exccution to be used with the cxpressional notation the notation would have to be altered in several
non-trivial ways. To start with, the notation suppotts potentially infinite scquences, For example, inside the
typical enumcrator is a generator creating an infinite sequence, and a truncator cutting this down to finite
length. You cannot just compulc the cntire generated sequence before truncating it. "The casiest way to deal
with this is to follow the Icad of APL. and simply outlaw generators and infinite sequences, allowing only
cnumerators of {inite scquences. However, as we have seen, subsidiary generators can be very convenient in
programs such as 0IGITS-T0-NUMBER.

A much more fundamental set of prablems arises from the fact that the clement at a time metaphor is
fundamentally incompatible with dircct execution. ‘The behavior of termination and sidc-effects is completely
different in the context of direct exceution. In many situations it is not clear whether these alternate behaviors
would be morc or less uscful. However, with regard to programs likc INVENTORY-REPORT which are
particularly well suited to the clement at a time metaphor, they are quite likely to be less convenicnt. In any
case, it is a fundamental change and much of the notation would have (o be redesigned.

There has been a lot of interesting work which tries to chart a middle course between the simplicity of the
direct exccution approach and the cfficiency of the conversion approach. One way in which this has been
done is by representing sequences cxplicitly, but without trying to computc the clements in them until they
are actually nceded. ‘this can be donc explicitly through coroutines[?], or implicitly through lazy
evaluation [4,6). In LispMachine Lisp, this could be done by using streams to represent sequences. Note that
this delayed evaluation approach is capable of dealing with infinite scquences as well as finite ones. Also note
that from the point of view of what gets exccuted when, this approach entails a more or less complete
conversion to clement at a time processing.

Although delayed evaluation is more efficient (particularly in space) than direct execution in many
situations it is still much less efficient than complete conversion. Several rescarchers have pursucd an
interesting mixed mode approach which provides an interpreted implementation where sequences are
represented explicily and. in addition, provides a compiler which performs conversions to climinate
intermediate sequences whenever possible.

‘The premier example of this has been the work on compilers for APL [2.5). Optimizing APL. compilers
attempt to locate array cxpressions where the arrays are being used merely as intermediate sequences, and

2 s o o L P LR WP S

Lvaluating the Fxpressional Notation -}4- Walers o .

then climinate the actual computation of these arrays. When an expression corresponding to the kind of
simplc loop representable by the expressional notation is located, then it is casy to climinate the intermediate
arrays. Wadler's Listless ‘Transformer }15] pursucs a similar approach for compiling a Lisp-like language. It
takes programs where finite intermediate sequences arc represented as lists, and converts them into programs
where these intermediate lists do not actually have to be created. The resulting programs can then be
efficiently compiled by normal means,

Unfortunately, there are several inherent problems with the partial conversion approach. First, since
dircct execution of unconverted loop cxpressions must be supported, the notation must have all of the r
restrictions outlined above. Sccond, the only reason to pursue partial conversion is that the notation supports -
features which cannot be practically converted. Unfortunately this raiscs a whole new problem -- that of
identifying what parts of what loops can be converted. In addition. steps have to be taken to interface loop
expressions which have been converted with those which have not.

A third and much more scrious problem is that in the presence of side-cffects, conversion is not a r‘
correctness preserving process. The reason for this is that it entails a radical change in execution order from ’
computing cach scqucnce as a unit o processing scveral sequences an clement at a time. ‘To deal with this
you cither have w refrain from converting any loop containing side-cffects (including input/output) or you
have 10 specify that such loops will always be converted and require the user to think in terms of the clement
at a time metaphor. Note that the latter approach cannot be taken if it is possible for the user to write a
side-cfivet containing loop which cannot be converted.

‘The approach taken here has been to avoid this kind of problem by simplifying the notation to the point
where complete conversion is practical. ‘The languages Hibol and Model suppert somewhat similar notations
(described in greater detail below) which are also suitable for complete conversion.

e 2

(PP AR N

Language Independence

N All of the discussion above was couched in terms of Lisp, and the initial implecmentation of the
expressional notation has been done for Lisp. However, nonc of the idcas presented here are inherently
: dependent on any specific language. 1t is true that it is particularly casy to make this kind of extension to the
! language Lisp. However, by modifying its compiler this could be introduced as an cxtension to any language.
lFor example. you could add the expressional loop notation to the language Ada [1] by supporting the six basic

features of the notation as follows:

Sequence Functions- As in the Lisp implementation, calls on sequence functions would look

syntactically exactly like calls on other functions; however, they would be handled like macros in
- order w create loops as described above. A set of basic sequence functions would be provided as
: part of the standard cnvironment.

Sequences- A new data type SEQUENCE OF would be added. 'This could be used to specify the data
types of variables and of the arguments to sequence functions.

3 User Definition of Sequence Functions- A new kind of function declaration SEQUENCE FUNCTION
4 would be added. Using this. sequence functions would be defined exactly like ordinary functions.
‘These would be the only functions allowed to have parameters and/or return values of type

scquence. Similarly, SEQUENCE PROCEDURE would be used to define procedures operating on
scquences.

Meta Sequence Functions - ENUMERATES, REDUCES, etc. would be provided as built-in functions. Asin
the lisp impiementation, these weuld appear syntactically o be functions taking functional
arguments: however. they would be handled by the compiler essentially as macros.

PRI T R S

> L, —_p I e soe seem aemcaamn
T T A S e e S s R IR e T S ST * e e T e

Waters -35- " Evaluating the Expressional Notation

Loop FExpression Blocks - A pew keyword BIEGIN SEQUENCE EXPRESSION would be introduced. ;':- |
This could be used in place of BEGIN in begin blocks, subprogram badies cic. Only these blocks
would be allowed to have variables of type scquence. Each such block would be compiled into a l’j
single loop.) .-'r'-}

Coercions - Given that the sequence data type would be uscd to identify all of the variables which carry '
sequences, various coercions could be supported in cxactly the same way as in the Lisp e

implementation. RN
|
‘The following examples show what loop expressions would look like in Ada. ‘Ihe first is a program which o

takes in a vector of digits and computes the corresponding integer. ‘The second program illustrates the
definition of a scquence function. '

type int_vector is array (integer range <>) of integer;
type int_sequence is sequence of integer;

function digits_to_number_ada(digits: int_vector) return integer;
function times_ten(x: integer) raturn integer;
begin return xs10; end;
digit, scale: int_sequence;
begin sequence exprassion
digit := Evector(digits);
scale := generateS(times_ten, 1):
return Rsum(digitescale);
end;

sequence function Rsum(ints: int_sequence) return integer;
begin sequence expression
return reduceS(+, 0, ints);
end; .
Duc to the type information which has to be specified and the fact that there is no compact representation
for literal functions, the above programs are quite verbose. However, they are identical in basic structure to

their Lisp counterparts,

yzag

Lan e Lo et by a2 0) SEEE ()

Comparison With Other Loop Notations -36- Waters

“_J 1.“.4.“."-‘

1V - Comparison With Other Loop Notations

Consider the program SUM-POSITIVE-EXPRESSIONAL (reproduced below) which was used as an example
in the beginning of this paper. ‘There are many different computationally equivalent ways to represent any
given loop. Al of these representations are capable of expressing the same basic looping algorithm. In order
to cvaluale the uscfulness of those representations, we must look at other characteristics beyond
CXPICSSIVENCss.

(defun sum-positive-exprassional (vector)
(Rsum (Fgreater (Evector vector))))

The paramount property required of a looping representation is wnderstandability i.e., how easy is it o
look at a loop and determine what the loop is computing. ‘Two closely relisted propertics are also of great
importance. The first is constructibilify i.c., given a specification, how casy is it to build up a loop which
satisfies the specification, "The second is madifiability ic., given a Idop. how casy is it to change it in
accordance with a change in its specification.

‘The key idea behind the expressional loop notation is that most looping algorithms are built up out of
stercotyped fragments of looping behavior and therefore loop programs are casier 1o understand, construct,
and modity il these fragments arc expressed as casily identifiable syntactic units. In the expressional notation,
Joop fragments are represented by scquence functions. Many other looping. notations have methods for
representing at least some loop fragments. Discussion of these methods is the major theme of the
comparisons below.,

‘T'wo things act as the focus for the following sections. ‘The first is the loop in the program SUM-
POSITIVE-EXPRESSIONAL. Euach scction shows how the loop notation being discussed could be used to
express this algorithm. ‘The second focus is-the six basic features of the expressional potation. 'The sections
are ordered from simple constructs which have very few of these features to Linguages like APL and Hibol
which cmbody most of them.

PROG and GO

The program SUM-POSITIVE -GO shows how our cxample loop could be implemented using a PROG and
60. 'The program is not very casy to understand because PROG and G0 suggests a particularly unfortunate way
to think about the loop, namely that it is basically a straight line picce of code which is converted into a loop
by the addition of a 60. This notation cmbaodies none of the basic features of the expressional notation. The
key idea which is being missed by this way of thinking is that straightforward loops like this onc arc built up
out of standard fragments of loops and not out of standard straight line fragments.

(defun sum-positive-go (vector)

(prog (sum i end)
(setq sum 0)
(setg 1 0)
(setq end (1- (array-length vector)))

L (cond ((> i end) (return sum)))
(cond ({plusp (aref vector 1))
(setq sum (+ sum (aref vector i)))))

(setq 1 (1+ 1))
(go L)))

Instead of highlighting the loop fragments, the program breaks them up into picces and then mixes the
picees together For example, the cnumicrator is broken up into three picees: an initialization which sets the
starting value for 1. a termination test that terminates the loop after the last index is produced, and a repetitive
step which increments I cuch time around the loop.

- -

L grar aiar. o SN o

Lamn gt . e o o

i - . -— . . i D PRSP SO S .

T T R T T T R T T T T Y N T R R R T——————~w _—

b -37- Comparison With Other Loop N(.)tations

s just as difficult to scc how the fragments interact as it is to identify the fragments themsclves. The
rator and the filter interact by sharing the variable 1. In contrast, the interaction between the filter and
lucer is represented by embedding part of the reducer inside of the filter COND. This is particularly
ing because the COND looks like it is implementing an ordinary straight line conditional fragment. One
look carefully at the surrounding context in order (o sce that this is not the case.
nough the above puints have been presented primarily as problems of understandability, they cause
much trouble with regard to constructibility and maodifiability. In particular, the fact that the
ats are nat localized means that neither the construction nor madification processes can be localized.
reatly complicates both tasks. Another problem is that since the various fragments are just mixed
1, there is no support for keeping them semantically separate. One must be particularly carcful that
icing a new fragment will not disturb once of the other {ragments,
sther kind of problem with PROG and GO as a notation for straightforward loops is that it supports a
r of features which are needed only in complex situations and which obscure simple loops by cluttering
p. Two examples of these are: the fact that PROG supports multiple tags, 60s and RETURNSs; and the fact
illows multiple assignments to the key variables involved. These features are particularly problematical
¢ cven when they are not being used, you have to Jook very closely in order to determine that they are
not being used. In the example, you have to verify that there is only one tag, onc GO, and onc RETURN
at there is only one assignment to cach of the critical variables in the Joop before you can have any
:nce in what is going on. '
're arc algorithms for which a PROG and GOs arc particularly appropriate. For examplc, if a program
1ents a finite state automaton, 60s can be used to directly model the transitions. G0s can also be used to

1ent various exotic multiple entry and multiple exit loops. However, it is generally recognized that GOs -

cr the best way to implement simple loops.

Tail'Recursive Style

‘program SUM-=POSITIVE-RECURSIVE is written in tail recursive style. Though it looks very different
M-POSITIVE-GO it specifies essentially exactly the same algorithm. A compiler which knew about tail
m would produce the same object code for the two programs. SUM-POSITIVE-RECURSIVE is
1at casier to understand because much of the verbiage is removed. ‘There is no longer any possibility
iple tags, GOs, or RETURNs. As a rcsult. the reader dues not have to worry about them. In addition, the
t each value changes only once on each cycle of the Joop is easy to see.

lefun sum-positive-recursive (vector)
(sum-positive-recursivel vector 0 0 (1- (array-length vector))))

lefun sum-positive-recursivel (vector sum {1 end)
(cond ((> 1 end) sum)
(T (sum-positive-recursivel vector
(cond ((plusp (aref vector 1))
(+ sum (aref vector 1)))
(T sum))
(1+ 1)
end))))

' PROG, the tail recursive style suggests a particular way of looking at a loop. Namcly, that we should
ze the task at hand into a problem that can be recursively reduced a step at a time to a problem that is
s solve, In this case the trivia] problem is adding up the positive clements of a sub-vector of length
he generalized problem is adding up the positive clements of a sub-veetor and adding this to an initial
um. ‘The recursive step involves adding one element into the partial sum, and reducing the sizc of the

bt tinekenstotioi e diniisintuintuiismudetdng it — Ao Bt

1
Tdoa o e ad

e T A It i e o A At e S e S ot s A A AR o T R v-.-.-‘ﬂ
Comparison With Other Loop Notations -38- ' - Waters ,~
L

“ 4

sub-vector. .
‘There are loops which can be best understood by looking at them from the recursive viewpoint. However, .':_]
this program is not onc of them. ‘The problem is that the tail recursive style is no better than a PROG at
highlighting the fragments that the loop is composed of. As above, the fragments are broken up and mixed %
together. In addition, the way the fragments interact is still unclear. FFor example, part of the reducer is stifl ‘
nested in the filter. The "(T SUM)” clause which has to be added into the filter COND makes that interaction]
even less clear than in the PROG above. Like PROG and 6O, the tail recursive style docs not support any of the _if
features of the expressional notation. rj
o

FOR , 2

The next few sections deseribe notations which begin to support the idea of a sequence function (i.e., g

fragments of looping behavior as identifiable units). They do not however support any of the other features
of the expressional notation,

Most algorithmic languages have looping constructs which facilitate the construction of simple loops. A
typical cxample .: these is the Ada FOR construct [1]. The Ada program SUM_POSTTIVE_FOR illustrates the
use of this construct. One benefit of FOR is that like the tail recursive style, it clearly delimits the extent of the
loop and makes it clear that there is no exotic control flow going on in conjunction with the loop.
Unfortunately, it is less helpful with regard to the data flow. There is no casy indication that cach of the
critical variables is only modificd once.

type int_vector is array (1ntéger range <>) of integer;
function sum_positive_for(vector: int_vector) returns integer 1is

sum: integer; -
begin
sum := 0;

for 1 in vector'range loop
if vector(1)>0 then
sum := sum+vector(i);.
endg if;
end loop;
return sum;
end;

A much more interesting aspect of FOR is that it cxplicitly represents one of the fragments -- the
xnumerator of integers over the bounds of the array. This explicit representation of the fragment is
sarticularly useful because (unlike the FOR constructs in most other languages) the Ada FOR construct protects
he semantic integrity of the fragment by prohibiting the loop counter from being modified inside the loop.
As a result. this particular fragment is easy to understand. construct, and modify.

Unfortunately. FOR is only capable of supporting this one kind of enumcrator. There is no support at all
or any ol the other fragments in the loop. ‘They are represented using straight line code in exactly the same
vay as in SUM-POSITIVE-GO. As a result, FOR is really not that much of an improvement over G0 with regard
v these other fragments,

Waters . -39- Comparison With Other 1.oop Notations

Iterators in CLLU

‘The language CL.U [8] has extended the concept behind the FOR construct so that it can represent uther
cnumcrators besides integer cnumecration. In CLU you can define a program called an irerator which takes in
some unitary arguments and creates a sequence of objects. ‘The iterator can then be used in a FOR in order to
enumerate a sequence of clements to be processed in the body of the FOR, ClLU provides a number of
standard iterators including one corresponding to EVECTOR. As an iltustration, the first program below shows
how EVECTOR could be defined if it did not alrcac'y exist. ‘The program SUM_PQSITIVE_CLU then shows how
the iterator could be used.

Evector = iter(a: array[int]) yields(int)
i: int := array[int]$low(a)
end: int := array[int]JShigh(a)
while i <= end do
yield(a[i])
=1 +1
end
end Evector

sum_positiva_clu = proc(a: array[int]) returns(int)
sum: iat := 0
for e: int in Evector(a) do
if @ > 0 then sum := sum + e end
end
return(sum)

_end sum_posit.ive_clu

Because there arc no restrictions on the form that the body of an itcrator can take (for example there is no
requirement that it cven be a loop). iterators arc more gencral than the cnumecrators presented here.
However, this power has drawbacks. For cxample, it makes it more difficult to define a meta sequence
function like ENUMERATES. In addition, it would be difficult to treat iterators like macros and compile them
inlinc in the loops which use them. The current CLU compiler implements iterators as separate proccdures
which return one cleracut of the sequence every time they are called.

From the standpoint of understandability, an important aspect of iterators is that their semantic integrity is
protected by the fact that they encapsulate their own state. In fact, iterators embody the logical concept of
enumceration fully as well as the cnumerators presented here.. (It should be noted that the language
Alphard [14] has a similar construct called a generator) Unfortunately, ncither of these Janguages provided
any support for any fragments other than cnumerators. As a result, cach of these constructs is only a limited
(though significant) improvement over simple FOR in the dircction of supporting fragments. ‘

Lisp DO

Another variant on FOR is the Lisp D0 construct. This construct is interesting becausce it recognizes the
existence of loop fragments other than cnumcrators and atternpts to group their parts more closcly together.
Fach of the initial lines of the DO is capable of representing a loop fragment. For example, the initialization
and repetitive step of the index cnumerator are combined together in the first line of the DO in the program
SUM-POSITIVE-DO.

| PSS SRS S R SN deandh dateinabdinduatdeimdusedum oo it - e e ks e A

d b

Comparison With Other Loop Notations -40- Waters

v
‘
.
‘-
4

(defun sum-positive-do {vector)
(do ((1 0 (1+ 1))
(end (1- (array-length vector)))
(sum Q))
((> 1 end) sum)
(cond ((plusp (aref vector 1))
(setq sum (+ sum (aref vector 1)))}))))

Unfortunately, DO is very restrictive in the way it can represent fragments. For example, the (ermination
test of the enumcrator has to be specified separately, causing the enumcerator to be less conveniently r
represented than in a FOR. In additon, there is no good way to represent a filter at all. Going beyond this, the
intcractions between the fragments have (o be represented in the same clumsy ways as in the programs above,
For example, a COND still has to be used to express the interuction between the filier and the reducer.

At a more fundamental level, although DO makes it casicr to write loop fragments as identifiable units, it
docs not enforce their semantic integrity. For example, you could casily put an assignment to T in the body of .
the 0o. 1 you did this the computation involving I would no longer be an index enumeration. This would be A
particularly confusing becausc the first line of the DO would still look like an ordinary index enumeration. y

Allin all, it is clear that the various FOR and DO constructs are quite benceficial because they make it easier
to locate a simple loop, and to verify that it is indeed simple. However, although these constructs poist in the .
dircction of explicitly supporting loop fragments they do not do this in cither a very thorough way or a very oy
semantically strong way. As a result, they arc only a modest help in the understanding, construction, and
madification of loops.

The Lisp Map Functions A

‘The Lisp MAP functions arc very restricted in what they can do. For cxample, they cannot be uscd to 5

cxpress the algorithm used in the examples above. .However. when they can be used they are very compact

and casy to understand. Each of the six MAP functions is an abbreviation for a particular combination of loop
fragments. ‘The pair of equivalent expressions below shows the fragments corresponding to MAPCAR.

(mapcar #'function x)
same as: (Rlist (mapS #'function (Elist x)))

Lach MAP function embaodics a certain set of fragments and protects their semantic integrity. If these
fragments are appropriate 1o the algorithm at hand, then the use of the MAP function lcads to a program which
is casy to understand. construct, and modify. The expressional loop notation is designed to extend the basic
a idea embodied in the MAP functions to a wider domain of programming.

3

The Lisp Macro LOOP

- The Lisp macro LOOP [3] is a significant improvement over the constructs presented above because it
ti recognizes loop fragments of all kinds as full fledged constituents. Consider the program SUM-POSITIVE-
: LOOP. In this program, the enumerator, filter, and reducer are each represented on a separate line in the loop. -
- This gives a program which is much easicr to understand, construct, and muodity than the ones above. A '
A number of standard loop fragments are supplied as part of the macro.

1

.
K
g

B i i G S et o SR A S e e e B oI b S el AR s e SIS Buth et Dt semoneae e e e e e e e |

Watcers -4]1 - Comparison With Other 1.oop Notations :
e . K
s (defun sum-positive-loop (vector) :
(loop for item being each vector-element of vector .
when (plusp item) '
sum jtem)) B
In addition to supposting selatively general fragments and their combination, LOOP supports the creation :
of user defined fragments of all kinds. ‘The example below shows how one could define VECTOR-ELEMENT OF .
which is the equivalent of the sequence function EVECTOR. l"

L

(define~loop-path vector-element Evector (of))

otas

(dafun Evector (ignore variable ignore phrases ignore ignore ignore)
(sublis (1ist (cons ‘'expr (cadar phrases))
(cons ‘'variable variable) .
{cons ‘vector (gensym))
(cons.’'i (gensym))
(cons 'end (gensym)))
"(((vector) (i 0) (end))
({setq vector expr)
(setq end (1- (array-length vector))))
(> 1 end)
(variable (aref vector 1))
nil

(1 (1+ 1))

Unfortunatcly, LOOP ncither develops the concept of a sequence, nor the analogy of trcating loop
. fragments as functions. ‘Vhis prevents it from expressing loops as scquence cxpressions in analogy with
[y ordinary unitary expressions. Instcad, LOOP supports a keyword-based syntax which specifies both the
fragments to be uscd, and how they arc combined. ‘The way fragments can be combined is rather restricted

because it is ticd up with the keyword parsing algorithm.
In addition, the LOOP micro has a budy part (not used in the example above) just like the budy of a DO.
This body can contain arbitrary computation -- there is no attempt to protect the semantic integrity of the

individual fragments in the initial part of the LOOP.

Another problem with LOOP is that the fucilitics it provides for defining the equivalent of new scquence
functions are rather cumbersome. Unlike the expressional notation, there is nothing corresponding to the
© meta sequence functions. The uscr has to dcfine a function which can deal with parsing parts of the LOOP
S syntax and which returns a list of six picces which are put in different places in the loop being constructed.
Acting together, these picces have to perform the actions of the desired scquence function. At the most basic

-1

»

Saaacas el el o

a level, this is quitc similar to what happens in the expressional notation. However, it scems better if the user
- does not have to interact with the system at this low a level,

APL

;! There are scveral programming languages which support what are cssentially expressional loop notations.
tf_;", ‘The oldest of these is APL. [10]. Itis intercsting to note that there is no reason to belicve that the developers of
t APL. had anything like the cxpressional loop notation in mind. Rather, they were just secking to provide a set
tf.j of very useful operations on arrays. However, a style of writing APL. has evolved where sequences are
b implemented as arrays.

- o~ Fhe implementation of sequences as bona fide data objoects automatically supports four of the six features
v o of the cxpressional notation (i.c., sequences. sequence functions, user definition of scquence functions, and

loop expression blocks). As illustrated below. both sequence functions and the vector summing algorithm can
be very compactly represented in AP1.. Note that since sequences are directly represented as vectors, there is

v v
i i- (R
P o

o PSP, ' PV P WY S

4
K
<
,
3
1
L
L
{
<
‘l
o
']
2
1

._!_._.:
Comparison With Ot.hcr 1.o0p Nutations -42- Waters ;’J
=
no need for the function EVECTOR.

Y RESULT<FGREATER VECTOR R
(1] RESULT«(VECTOR>0)/VECTOR '_4

N
o
V RESULT+«RSUM VECTOR 3
(1] RESULT«+/VECTOR]

v

V SUM«SUMPOSITIVEAPL VECTOR
(1] SUM«RSUM(FGREATER(VECTOR))
v

ROk s L

PR

APL. also has operators similar to the meta sequence functions. For example, “function/ value” is the same
as (REDUCES function init value) and "function\value” is the same as (SCANS function init value). (In both
cases the init is automatically chosen to be the identity clement under function.) Unfortunately, user defined

* functions cannot be used with these operators, so cach onc only actually corresponds to a small number of
built-in scquence functions. APL supports the notion of a filter in a morc gencral way than it supports
RE:.UCES and SCANS. "(function(value))/ value” is the same as (FILTERS function value). This operator
(the two argument form of /), which is called compression, takes in two vectors and creates a vector of
clements from the sccond vector which correspond to non-zero clements of the first vector. Any arbitrary
function can be used to create the first vector. A binary function rather than a unary one is used in the
cxample. (Note that compression makes a shorter vector, rather than introducing empty clements.)

APL. has no operators corresponding to the meta scquence functions GENERATES, ENUMERATES, or
TRUNCATES. Since sequences arc represented as arrays, there does not have o be any equivalent of the
scquence functions EVECTOR and RVECTOR. Further, since arrays arc the only composite data structure
supported by AP, there do not have 1o be any cnumerators or reducers which deal with other data structures.
Since all arrays arc finite, there need not be any gencrators or truncators. APl docs have an operator (the
index generator " 1N™) corresponding to (ERANGE 1 N). Notc that the fact that the meta operators provided
by APL are somewhat limited docs not prevent the user from defining any kind of sequence function he
dcsires by simply using more primitive coustructs to write the appropriatc function on arrays.

APL. also supports the ideca of implicit MAPS to some cxtent. Every. scalar function can be applied to
vectors with the meaning that the operation is to be applied to every clement of the vector. Also, scalars are
cocsced to vectors wherever necessary. Both of these processes are happening in the expression (VECTOR>0)
above which takes in VECTOR and produces a vector of zeros and ones which indicate which clements of
VECTOR are greater then zero. ‘This cannot be done as completely as with the expressional notation presented

here because there is no mechanism for differentiating between arrays which are arrays, and oncs which are
24
- intended to be sequences.
o ‘There arc two ways in which APL. is more powerful than the expressional notation presented here. First, it
. . . ,
. supports a numbcr Gf operators which are much more powerful. For example, it has a number of opcrators
:’i which rearrange the order and structure of an array such as reshape, concatenation (of two vectlors), expansion
o (the inverse of compression), reversal, rotation, and grade up (sort). 1t has complex meta operators on pairs of
- arrays such as outer product and inner product which produce outputs which are not the same shape as the
'.'_;:_ inputs. In addition to all this, arrays are of course also just data objects, and you can operate on them as such.
L You can retrieve and sct individual clements and perform arbitrary computations,
g | Another way in which APL is more powerful is that while scquences are analogous to vectors, the standard f
l’" intermediate structure in APL is the array. The fact that arrays arc multidimensional makes them a more e j
. fleaible representation. Al of the operators above can be applicd to arrays, and to selected parts of arrays
e producing resalts of similar or dissimilar shape. ' 7
R -4
o |
'e)
" -1
;]
=
L e RN

Watcrs -43- Comparison With Other Loop Notations ~ * T

"Fhe powerful features provided by APL muke it possible to compactly cxpress a wide varicty of complex
mathematical algorithms which cannot be expressed in the expressional notation at all. ‘o these algorithms,
APL. has the virtue of casy understandability, constructibility, and modifiability. Unfortunatcly API. has
several drawbacks. First, it docs not support any data structures other than numbers, characters, and arrays,
Sceond, although APL supports the expressional metaphor almost compilctely. it docs not suppaort the clement
at a time metaphor at all. "Third, due to that fact that it supports such complex array functions and the fact
that it rejects the clement at a time metaphor, APL cannot in general be compiled into efticient code. Fourth,
APL’s approach to loops is embedded into a somewhat cryptic and forbidding syntax. ‘Together, these
features have limited APL's impact. ,

‘The expressional luop notation presented here climinates these problems. First, it can handle arbitrary
data structures. For example, to deal with a now aggregate structure, the user nced only define new

- enumerators and reducers to convert the aggregate to a sequence and vice versa. Sccond the element at a time

" metaphor is part of the basis for the notation. Third, the expressional loop notation deliberately omits all
those operations on scquences which would make it hard to compile. Fourth, the cxpressional notation is
designed to be added into preexisting languages as a natural cxtension of their syntax. One nced not leamn a
new language and cnvironment in order to use it.

“The Listless Transformer

In a Lisp-like language onc could decide to support the expressional metaphor by implementing
sequences as lists. Wadler [15] has implemented an interesting prototype system (the listless transformer)
which is capable of transforming programs containing sequences implemented as lists and climinating the
- actual computation of intcrmediate lists. The loop notation supported by his system is at heart cssentially -

' identical to APL with lists substitutcd for arrays. The target of his system is a Lisp-like language called

Iswim [15]. The example below shows how sequence functions can be defined and used in this language.

def Evector(v) =
Evectori{v, 0, length(v))
where rec Evectorl(v, -1, end) =
if i>end then nil
_else cons(aref(v, 1), Evectori(v, i+1, end))

def rec Fgreater(xs) =
case xs of
nil => nil
cons(x ,rest) => if x>0 then cons(x, Fgreater(rest))
else Fgreater(rast)

dof Rsum(xs) »
Rsumi(xs, 0)

PRt R

(- where rec Rsumi(xs, total) =

. case xs of

g nil => total

e cong(x, rast) => Rsumi(rest, total+x)
:;. def sum-positive-listless(v) =

g Rsum(Fgreater(Evector(v)))

It is not clear whether any meta sequence functions arc supported: however, they would be casy to
implement as macros. In any case, the user can implement any sequence function he desires be defining
arbitrary functions on lists. lswim is a typed language and cocrcions like implicit introduction of MAPS can be
supported. '

Like APL, Wadler's notation is more powerful.than the notation described here in that it supports

T T T T
._.‘...I! v
LWy
)
)

L e W TN T

NS
i A e

(i 4

v L1y e ry
o -

oE

o 1 Jl'_‘- ‘-r. .r_‘.

arbitrarily complex sequence functions and sequences can be multi-dimensional sequences of sequences, It
goes beyond APL. in being able to deal with arbitrary data structures.

Wadler's notation also shares APL’s greatest weaknesses. It does not support the clement at a time
metaphor. In addition, due to the fact that arbitrarily complex sequence functions are altowed, it cannot be
efficiently compiled in the general case. It also shares the problem that, since it is not oricnted toward the
clement at a time metaphor, loops involving side-cffects cannot be cfficiently compiled.

Coroutines

Another language which supports most of the expressional metaphor is the coroutine language of Kahn
and MacQueen|[7). They have suggested using parallel processes (coroutines) in order to represent
computations communicating via onc way channels (sequences). [n their approach, unbounded sequences are
implemented as real data objects which are passed an element at a time through channels between processes
exccuted in parallel. The code below shows one way the vector summing algorithm could be implemented in
their system. Each sequence function is defined as a separate process. These processes can have ordinary
(unitary) inputs (c.g., the VECTOR input of EVECTOR) and outputs (c.g.. the return valuc of RSUM), They can
also have channel (sequence) inputs (c.g.. the CHANNEL1 argument of FGREATER) and outputs (c.g., the
CHANNEL output of EVECTOR). An clement is retrieved from a channcl by the function (GET channel). An
clement can be put into a channel by the function (PUT item channel). In order to use the scquence
functions, they arc combined together in an expression as in the function SUM-POSITIVE-COROUTINE. This
expression is placed in a 0eCO form which causes the three processes to be executed concurrently.

process Evector vactor => channel;
vars 1;
1 ->1;
repeat
put(i. channel);
increment 1;
until idupper-bound(vector);
put(done, channel)
endprocess;

process Fgreater in channell => channel2;
vars n;
repeat
get(channell) -> n;
if n=dona or n>0 then put(n, channel2) close
until n=done :
endprocess;

procass Rsum in channel => sum;
vars n, sum;
0 -> sum;
repeat
get(channel) ~> n;
if not(n=done) then sum+n ~> sum close
until n=done;
return(sum)
endprocess;

process sum-positive-coroutine vector
start doco Rsum({Fgreater(Evector vector)) closeco
ondprocess;

The language of Kahn and MacQueen supports neither meta scquence functions, nor automatic coercions,
However, they could be added if desired. It is interesting to note that, unlike APL, curoutines directly

-

L e L - aier e ol anal e atng-uint iy .,r_‘_r*-,_-.’, -._’.,‘.‘_-."'.'.""‘.'»’._'~ s e e e TR TR T e T e TR

Waters _ -4 - Comparison With Other L.oop Notations

suppuort the clement at a time metaphor.

The corautine approach is more powerful than the expressional notation along a different dimension from
APL. Fach process is a truly independent parallel process. One aspect of this is that sequences can really be
infinite. In addition, it is pussible for one process 1o terminate without forcing the other ones to terminate and
processes can dynamically spawn whole networks of other processes. This mukes it possible to cxpress modes
of computation which cannot be conveniently expressed with any of the other notations discusscd here.
Howcver, this brings with it a certain overhead. In the example above, the special token DONE is passed
around between the processes so that the termination of the EVECTOR process will trigger the termination of
the other processes,

‘The key drawback of the coroutine approach is that it is not clear how it can be compiled. Since it
supports the clement at a time metaphor, certain logical obsticles are removed; however, like APL, it supports
the definition of arbitrarily complex sequence functions. Going beyond this, given that the coroutine
notation is capablc of expressing arbitrary parallel computations, one would expect that it will be extremely
difficult to write an optimizing compiler which reliably detects groups of processes which intcract merely as
simple loops. However, without such a compiler, the coroutines impose an unaceeplable overhead on the
execution of simple loops.

‘The expressional loop notation presented here is based on ideas very similar to the coroutine notation;
however it is restricted so that it s trivial to compilc. The intention is to usc the expressional notation to
represent simple loops while reserving the coroutine notation for those situations where its greater power is
required.

- Hibol & Model

The language Hibol [12,13] is the -oldest language which both supports the idea of a scquence and is
completely compilable. It is a very high level business data processing language based on the concept of a
flow (which is basically cquivalent to a sequence). 1t is very strongly oricated toward the clement at a time
metaphor and relies heavily on the concept of the implicit introduction of MAPS. The body of cach Hibol
program is a nonprocedural set of cxpressions specifying the computations on typical sequence clements,

‘The program SUM_POSITIVE_HIBOL computes the sum of the positive clements in a file, (The only
aggregate data type supported by Hibol is a file.) The language provides a few standard sequence functions
(e.g., the operator SUM in the program below). In addition. the operator IF implements the meta scquence
function FILTERS. These facilitics make it possible to specify the body of SUM_POSITIVE_HIBOL as a simple
expression. The DATA DIVISION part of the program describes the files accessed by the program in a format
!cry s_imilar to Cobol. '

[N S AL WL S S LS Sy PA ST SIS TP T VA SHPY UL A W W T UL U O WAl Gy S e v b ol . P SR P N SO U S

PR St uak secdt ol st gy dutess Tt T st My ‘ Shafi Rl Pt Maa T Al ATI i A pa et M ANt I N i St s S i) 4 vl st gt at- e

Comparison With Other |.oop Notations -46- Waters s

S

1

/+ tha program sum_positive_hibol e/ :
data division 3
key section "
koy index !:

ftield type is integer K

input section o

file vactor_item ,]
key is index 1

type is integer ek

output section v '~
file sum_positive .

type is integer

computation division R
sum_positive 1s (sum of (vector_item if vector_item > 0)) -

Hibol is more powerful than the cxpressional notation in that flows arc multidimensional objects like
arrays where cach level of index is an alphanumeric key rather than a number. ‘The Hibol operators can be
sclectively applied to specific dimensions of a flow. A sct of defaulting mechanisms make it possible to
specify a simple program like the onc above without having to explicitly specify which dimensions operators
arc being applicd to. However, the operations which can be applied to flows have been carefully sclected so
that all low cxpressions can be compiled into efficient loop code.

‘The Hibol compiler clcarly shows that an expressional looping notation can be straightforwardly compiled
cven if it supports multidimensional sequences. Nevertheless, when designing the expressional loop notation
presented here it was decided to omit this feature for two reasons. First, it was judged that the frequency of
its usc would not justify the extra complexity of ‘supporting it. Sccond, when a loop. algorithm becomes RS
complex cnough that the user is forced to speeify which dimensions operators are being applied to, thé .-
syntactic mcchanisms required cause the resulting cxpressions to begin to lose the virtue of casy
understandability.)

From the point of view of this discussion the primary weakness of Hibol is that it docs not provide very
much support for the expressional metaphor. First, it provides a few built in sequence functions, but does not '
allow the user to define new ones. Note that files are the only aggregate data structurc supported by Hibol,
and that cnumeration and reduction of files occurs implicitly. Second, it supports only two ineta scquence
functions: MAPS (introduccd only implicitly) and FILTERS (the form IF). Implicit nested loops can be
specificd but there is no notion of an explicit looping block.

As discussed above. the cxpressional loop notation presented here addresses these probleins because it can
deal with arbitrary data structures, because it supports the creation of uscr defined sequence functions, and
because it is intended to be embedded in a language which supports stindard control flow constructs. The
. expressional notation being presented here-could be looked at as taking some of the key ideas embodied in
Hibol and scparating them out from the business data processing language context of Hibol in a form in

T
]

o

;.. which they can be conveniently added into other languages.

o Morc recently, another language has been developed which is very much like Hibol. This language
" (Modcl [11]) is based on the same idca of a multidimensional sequence, and is also primarily intended for

business duta processing applications. 1t is somewhat more powerful, and has a somewhat wider range of
features, but at the level of this discussion it is essentially identical to Hibol. 1t is fully compilible and has the
1 same basic advantages and disadvantages.” It serves as yet another example that the idea of a scquence appears
in many dificrent fonns in many diffcrent languages. -

B L o k. S aa v
ST

Y .,
R A &

ila .

RO P~ NEAEACRING

" P
A s
el

.Waters - 47 -) ~ References

References

{11 1.G.P. Barnes, "Programming in Ada”, Addison-Wesley, | .ondon, 1982,

[2°T.A. Budd. "An APL. Compiler”. Univ. of Arizona, Dept. of Comp. Sci. TR 81-17, October 1981.

[3] G. Burke and D). Moon, "Loop Iteration Macro®, MIT/1.CS/TM-169, July 1980.

[4] D.P. Fricdman and .S, Wise, "CONS Should Not Evaluate hts Arguments”, Indiana Tech. Rep. 44, Nov.,
1975.

{51 1..J. Guibas and 1).K. Wyatt, "Compilation and Dclayed Evaluation in APL", in Proc. Sth ACM POPL
Conf., Sept, 1978.

(6] P. Henderson and J.H. Morris, "A Lazy Evaluator, preseated at the SIGPLAN-SIGACT Symp. on
Principles of Programming | anguages, Atlanta, Jan. 1976,

[71 G. Kahn and 1.B. MacQueen, "Coroutines and Networks of Parallel Processes”, in 1977 Proc. IFIP
congress, North-Holland, Amsterdam 'T'he Netherlands, 1977,

[8) B.H. Liskov, ct. al., "C1.U Reference Manual™, Lecture Notes in Computer Science, G. Goos and J.
Hartmanis editors, V114 Springer-Verlag, New York, 1981,

[9] 12.A. Moon, “Macl.isp Reference Manual”, MIT Cambridge MA, April 1974,

[10] R.P. Polivka and S. Pakin, "AP).: The |.anguage and Its Usage™, Prentice-Hall, Englewood Cliffs NJ,
1975.

[L1] N.S. Prywes, A. Pnucli, and S. Shastry, "Use of a Non-Procedural Specification Language and Associated
Program Generator in Sofiware Development”, ACM TOPLAS, V1 #2, October 1979, pp 196-217.

[12) G.R. Ruth, "Data Driven Loops”, MI1/1.CS/TR-244, 1981,

[13] G.R. Ruth, S. Alter, and W. Martin, "A Very High Level Language for Business Data Processing”,
MIT/1.CS/1R-254, 1981.

[14] M. Shaw and W.A. Wulf, "Abstraction and Verification in ALPHARL: Defining and Specifying
heration and Generators”, CACM V20 pp 553-564, Aug. 1977,

[15] P. Wadilcr, "Listlessness is Better than Laziness”, Ph]) Thesis, Carncgic-Mcllon Univ., (to appear).

[16] R.C. Waters. "Automatic Analysis of the Logical Structurc of Programs”, MI1/7A1/TR-492, 1)cc. 1978.

[17) R.C. Waters. "A Mcthod for Analyzing Loop Programs”, IEEE Trans. on Soft. Eng., VS # 3, May 1979,

. [18] 1). Weinreb and 1). Moon, "1.isp Machine Manual”, MI'T Cambridge MA, July 1981,

e L

PRI WS D SR P W Ty PN VTS

Ay

f e g e e seme e o
.'_i' 41."'_!(7- "

The Compilation Prqccss | -48 - Waters

Appendix A: The Compilation Process

The first section in this appendix describes some assumptions which the macro expansion process makes
about the form of the loop expressions to be processed. The user must be carcful 1o ensure that these
assumptions are satisficd. ‘The rest of the sections discusses the actual macro expansion process in detail. This
discussion is intended to function both as detailed documentation for the actual program, and as a guide
anyonce who wishes to implement a similar system,

‘I'he compilation process revolves around a data structure representing the key information about a
fragment of looping behavior, Each (ragiment data structure contains all of the information needed to create a
loop corresponding to a sequence function, and information about the inputs and outputs of the sequence
function. A call on a scquence function is represented as an application of a fragment data structure 1o a list
of arguments. The process of combining several sequence functions together into a single loop proceeds by
combining together the fragment data structures corresponding to them. -

Given a program that contains onc or mor loop expressions, macro expansion will proceed ncrmally until
the outermost macro in one of these loop -cxpressions is encountered. At that time, the LETS macro package
immediately locates all of the inner loop macros in the expression and constructs a loop combining them all
together. Macro expansion then continucs normally until another loop expression is cncountered.

‘The process of converting a loop expression into a loop occurs in several steps. Afier locating an
expression, all of the calls on sequence functions in it are converted into applications of fragment data
structurcs. Similarly, calls on meta sequence functions are converted into applications of fragment data
structures built out of the tunctional arguments passed to the meta sequence functions.

Once everything has been reduced to an application, the result is parsed in order to located nested loops.
Any nested loops are isolated and processed scparately. A second phase of parsing then performs cocercions
such as the automatic introduction of MAPS and AT-END. The resulting group of applications is combined
together into a single fragment data structure. This structure is then converted into a single loop.

As an cxample, the following shows the code which is produced for the loop in the program SuM-
POSITIVE-EXPRESSIONAL.

(Rsum (Fgreater (Evactor vector)))

becomes:(prog T (i end num sum)
(setq 1 0)
(setq end (1- (array-length vector)))
(setg sum 0)

L (cond ((> i end) (go E)))

(setq num (aref vector 1))
(cond ((> num 0) (setq sum (+ sum num))))
(setq 1 (1+ 1))

(go L)
E (return-from T sum))

1

1 -

NETVr S WE B)

t[‘. - v', . Watcrs 49 - "The Compilation i’mccss

Interaction With Other Macros

‘There are two important (and unfortunate) restrictions on the way in which the LETS macro package can
be used which stem from the fuct that the package does not have any special knowledge of cither system or
user defined fexprs or macros. ‘These restrictions could be removed if more knowledge was built into the
compilation process.

‘The first restriction is that in a loop expression, every list whose CAR is one of the loop macros must be a call
on that macro. ‘The list will be macro expanded and combined into the loop. ‘1'0 avoid running afoul of this
assumption, you should never use the name of one of these macros as the name of a variable. ‘The only place
where this restriction does not apply is inside of quoted lists,

The second restriction is that for each variable name in the argument list of a DEFUNS, bound by LETS, or in
the lambda list of a literel lambda expression passed 10 a meta sequence function, every occurrence of that
symbol in the body must be an instance of a reference o that variable. ‘The function SUBST will be used to
rename this variable when necessary to avoid name conflicts. ‘The two miin ways that trouble could arise is if
you use a variable name which is the same as a function name, or if you rehind the variable name in some
inncr scope. Note that you cannot even usc the variable name in a quoted list.

Another kind of restriction ariscs from the fact that the LETS macro package docs all of its processing
without cxpanding any other macros. As a result of this, only lists whose CARs are one of the loop macros are
allowed to expand into a lvop fragment (as opposed to a complete loop). In particular, an ordinary macro
cannot expand into code which is supposed to be a loop fragment. ‘This will not work because the macro will
not be expanded until after the loop it is in has alrcady been completely constructed. Note that it is all right
for a macro to contain a complcte loop expression which will be converted into a loop as a whole by itself.

The appropriate way to make macros describing lop fragments is to usc DEFUNS. For example, compare the
following two definitions of a loop fragment which enumcrates the CARs of the clements of a lis. Only the
second one will work. '
(defmacro car-Elist-buggy (input)
(1ist ‘car (1ist 'Elist input)))
‘ (defunS car-Elist (input) '
= (car (Elist input)))
o Another ¢ asequence of the fact that LETS docs extensive processing befare other macros arc expanded is
i that you cannat nest one of the expressional macros inside a call of a macro that looks inside of its argument,
® For example, cven assuming that you define a SETF property for ELIST, you cannot write
{ "(SETF (ELIST L) X)". The problem is that since the loop macros are expanded first, SETF will never get
- to sce the ELIST. Also note that instances of loop macros are usually replaced by variables in the resulting
E‘_-.-" : ' loop. However, you can say things like the following "(SETF (CAR (ELIST L)) X)" because the SETF docs
E not need 1o look at the argument of the CAR.
v
B The Representation for a Fragment
. Loop fragments arc represented internally by the following structure:
. (S-frag name ((arg tpe . info) ..)
{. icode codel codel peode uconde)
: g .

The name part of the form is used for producing more understandable error messages. It records what
macro generated the fragment, The second part of the form is a list of argument descriptors. ‘The symbol arg
is the name of the argument. Every internal usc of the argument is represented by that symbol. ‘There is one
argument declaration for every input, output, and anxiliary variable used by the fiagment. The order of the

Mo Joan vve: e DA e i g S gt e gt et Jiy
W

"IThe Compilation Process -50- ‘ Waters

declarations is used to match the inputs up with paramceters when the fragment is used. 'The symbol arg is
created by GENSYM. It is guaranteed to be unique and occur only in this single fragment. As a result,
renaming docs not have to be used when fragments are combined together. If the fragment is copied. then
the args arc renamed by using SUBST. As a result, every internal instance of the symbol must correspond to a
use of the variable.

Note that free variable inputs and outputs are not mentioned in the argument descriptors. Rather, they
arc just referred to in the body of the fragment where appropriate. Duc to the fact that the order of execution
in a Joop cxpression is prescrved, things work out all right when fragments are combined together without the
system having to take any explicit action. In fact, the system ignores the presence of free variables entircly.

Fach argument has a iype which is one of the following symbols: UI, ST, U0, SO, UP, SP. A, and F. 'These
symnbols are built up out of the following code letters. ‘The use of some of the code letters requires that
additional information be supplicd in the info ficld.

U - UNITARY - Thisisan nrdinfnry 1.isp object. Inputs arc given a value before the entire fragment is
cvaluated, and outputs pass out their final value when the whole evaluation is over.

S - SEQUENCE - This specifics that the argument is a scquence. The variable holds successive
clements of this sequence. On cach cycle of the loop, ciach sequence input is given a new value
before the first time it is read, and the final value of cach sequence output is exported out of the
fragment. ’

I - INPUT - ‘Thisis an input object passed in via nesting in argument position.

0 - ouTPUT -~ 'This is an output passed out through the return value, There can be more than one
return value in which case their order specifics which is which in a MULTIPLE-VALUE,

A - AUx - This is an internal auxiliary variable. It must be unitary. If the info ficld is non-NIL, it
indicates that this variable was specified by the user and must be retained in the finat loop produced.

P - OPTIONAL - Thisis an optional input. When the definition is applied it is converted into cither
an input or an aux. ‘Ihe info ficld contains an initializing expression to usc when a paramcter value
is not supplicd for this argument. -~

F - FLAG - 'Thisis an auxiliary flag used in filtered computations. The filtered sequences themselves

arc carricd in scparate variables. The info ficld is a list of all of the free variables and return values
which arc under the controt of this filter flag.

The remainder of the fragment specifics the computation to be performed. The icode is a list of zero or
morc expressions which arce exccuted exactly once just hefore the repetitive part of the loop is cxecuted. The
icode cannot refer to any sequence arguments, 1t can reid only unitary inputs. 1t can writc any aux, or unitary
output. Its effect is Lo give initial values to variables. T'ypically, every unitary output is given some default
vaine,

The codel and code2 arc the repetitive body of the fragment ‘They arc the only places where sequence
arguments can be referred to. Both of these arc lists of zero or more expressions. Both of them are exccuted
on cvery cycle of the loop and can read sequence values, The codel (but not the codel) can write sequence
values.

There are two different slots here because of the following property. Al the codel parts of all the
Iragments being used will be cxccuted before all of the code? parts. This gives you control aver what is going
on. In particular all terminations arc placed in code/ parts. As i result, you can depend on the fact that the
cude2 will not be exccuted on the cycle where the loop terminates. (The code! may be.) If there is a filter
producing sane of the inputs read by codel or hy code then both will be evaluated only on those eycles
where all o the filtered inputs are available.

"~ P P PP G T DNy

B

-51- ‘The Compilation Process -

W SRR

minations arc represented by pultting 4 COND with DONE in onc of its branches in the codel. Filters are i
nted by using the form (S-IF flag-test. actions) in the codel. "The effect of the filter is abtained by
g sequence outputs in the actions and making the appropriate flug argument declarations,

peade is a list of zero or more expressions which is executed exactly once after the Joop, if it tenninates
ly. It cannot refer to any sequence quantities. - Its purpose is to perform cpilog computations involving
lary outputs.

ucode is a list of zero or more expressions which is cxecuted in an UNWINO-PROTECT wrapped around
p eventually produced. It cannot refer to any sequence quantities. Its purpose is to perform epilog
ations involving the unitary outputs which must be performed no matter how the loop is terninated.
following cxamples illustrate the fragment represcntation, ‘The first corresponds to the sequence
n RLIST. Nate the use of some peode in order to reverse the list CONScd up. ‘The second corresponds
NGE. Notc the usc of an optional paramcter BY, the presence of a terminator, and that the
*ntation of the state is placed in code? so that it will not be done on the cycle on which the loop
ites. ‘The final fragment corresponds to FGREATER. Notice that the computation of the filter flag is
od from the S-IF which specifies what values are controlled by that flag.

~frag 'R1ist ((item SI) (result U0))
{(setg result nil))

((setq result (cons item -result)))
()

((setq result (nreverse result)))

@)
~frag 'Erange ((state UI) {end UL) (by UP . 1) (int SO))

{(cond ((> state end) (dgne))) (setq int state))
((setq state (+ state by)))

()
9))

-frag ‘Fgreater ((int SI) (1imit UP . 0) (flag F big) (big SO))
((s0tq flag (> int limit)) (S-if flag (setq big int)))
()

() :

0) o

f the internal macro processing revolves around fragments represented in the above form. They are
:d together into larger and larger fragments and then converted into normal loop code.

Sequence Functions

form (S-APPLY outs fragment parameter...) is used to épply a fragment to a group of paramcters.
+ field indicatcs what variables.(if any) the outputs arc being assigned to. T indicates that the outputs
being returned. Scquence functions are merely macros which expand into S-APPLYs of fragments.
lustrated by the following pair of cxpressions. Note that 7 »ch time the fragment is instantiated, the
ts in it are renamed so that there cannot be any name clashes.

(R14st x)
e as: (S-apply T (S-frag 'R1ist ...) x)
mly interesting thing which happens when a sequence function is expanded into an S-APPLY is the
t of optional arguments. If a paramecter is provided, then the argument list of the fragment is
s that the argument is specified to be a normal input. If no parameter is supplicd then the argument

T TR Te e T T - ") £y (5 0 - . - - ny - o -
ST T — SR R e e ac pae ———— T —— .-?—_-,'-!—-,—T
.

he Compilation Process -52- Waters

s converted into an aux and the initializing expression is used to give the argument a value cither in the icode
if it is unitary) or in the codel (if it is a sequence value). Note that this cxpression is evaluated inside the
ragment and can refer to alt of the arguments which precede it. “The case of an uptional argument not being
upplicd is illustrated bcl()w. Note the general form of this fragment shown above.

(Erange 1 10)
same as: (S-apply (S-frag 'Erange ((state UI) (end UI) (by A) (int S0))

((setq by 1))
((cond ((> state end) (done))) (setq int state))
((setq state (+ state by)))

()
()
1

10)

"The way the S-APPLY forms treated by sequence functions are themselves handled is discussed below.

Meta Sequence Functions

1.ike scquence functions, meta scguence functions produce S-APPLYs of fragments. However, unlike a
cquence function, some of the arguments to a meta sequence function are used to compute what the
ragment should be. ‘The meta sequence function REDUCES is used as an cxample in the pair of forms below.
Jote how the name ficld of the S-FRAG is used (o record the initial meta sequence function cxpression.

(ReduceS #'(lambda (a b ¢) body) inil seql seq2)
same as: (S-apply (S-frag '(ReduceS #'(lambda (a b ¢) body) init seql seq2)
((in UI) (b SI) (c SI) (a UOD)) . .
etg a in)) A < -
etq a body))

“w un

Note that since the variables of the litcral LAMBDA become variables of the resulting fragment, they must
ic unique in body, because SUBST may be used to rename them. 1f a literal function name is uscd instead of a
iterit! LAMBDA, then it is converted into a LAMBDA,

Locating Loop Expressions

Before a loop cxpression can be processed. it has to be located in its entirety. ‘There are three ways in
‘hich this can happen. ‘The casy case is when the loop is delimited by a LETS or DEFUNS. In that casc there is
o difficulty in identifying it.

The second case is also quite casy. Whencver any of the sequence functions or the meta scquence
anctions is encountered unexpectedly (i.c.. not during the processing of a loop which has alrcady been
wated) it is wrapped in a LETS. Processing then continucs as if the LETS had always been there.

‘The third process is much more complex. As soon as a loop expression is located by cither of the above
wihods, all of the sequence functions and meta sequence functions inside it are expanded into S~APPLYS.
my LETSes found inside are processed completely as subloops before processing continues on the outer loop.
Note that no other macros arc expaaded at this stage or at any stage during the processing of loop
xpressions.) Once this is done the result is parsed in order to detect nested loops. Once they are located,
1y arc wrapped in LE ISes and immediately processed.

RIS o B

Waters -83- ' The Compilation Process

Nested loops ase lwated by looking at the types of inputs and outputs to S-APPLYS inside a loop
expression. These types are specified in the argument lists of the fragments the S-APPLYs are applying. To
simplify the discussion assume for the moment that every fuaciion in a loop cxpression took exactly one
argument, Every S-APPLY takes in cither a unitary thing U or a sequence S and returms ong of the two. They
will be annotated as cither U-U, U-S, $~U, or §-8.

Consider the examples below of how fragments can fit together. The first example shows a loop
expression where everything fits together, and there is no nested loop. The second example shows the
prototypical case of a nested loop. If the two inncr fragments are grouped tagether into a subloop and then
MAPScd over the strecam coming out of the first fragment. then cverything will work fine. Otherwise there is
no good way to make things fit together. The search for nested loops focuses on linding balanced
subexpressions which clash with their surroundings at both ends. The only real difficulty is that the
cxpression as a whole may be unbalanced at cither cnd (as shown in the final two examples) so there is no
dependable place where parsing ‘can start.

(Rsum (Fgreater (Elist x)))
u-s §-8 S-U

{R1ist (R1ist (Elist (Elist x))))
u-s u-$ s-u s-u
parsed as: U-S <U-S S-u» S-u

{R1ist (Elist (Elist x)))
u-s s-u 's-U
parsed as: <U-S s-Uu> S-u

(R1ist (R1ist (Elist x)))
u-s u-s s-u
parsed as: U-S <U-S- S~

Note that ordinary functions embedded in loop cxpressions are MAPScd if they end up. receiving a
sequence and otherwise are just exccuted normally. Thercfore, they always return the same type that they
reecive and do not have to be considered when looking for nested loops. The real parsing algorithm has to
work on tree-like expressions.and is cxtended accordingly. It looks for balanced subtrees which clash with
their surroundings at both root and fringe. They arc then separated out as subloops.

LetS

Onc purpose of a LETS is to dclincate a loop as discussed above. The other is to define sequence variables.
All of the variable valuc pairs are simplified as shown below by putting the initializing expressions inside the
LETS. Note that this mcans that these cxpressions cannot refer to the valucs which any of the bound variables
have outside of the LETS. Destructuring is handled by expandir:g it into a group of SETQs.

(lets ((x (Erange 1 10))
((a b) (Elist 11st)))
(reverse (R1ist (1ist 'item x (+ a b)))))
becomes:(lets (x 2 b y)
(setq x (Erange 1 10))
(setq y (E1ist 1ist))
(setq a (car y))
(setq-y (cdr y))
{setq b (car y))
(reverse (R1ist (1ist 'item x (+ a b)))))

Note that the only variables which carry sequences inside the body of the LETS arc the ones specified in
the bound variable list. Al of the free variables referred to in the body are unitary no matter what they are in

v -Y J'-‘ RS

Ity (™ OO

The Compilation Process

the place where they are defined. This reflects the fact that if this Joop is nested in another loop then it will be
MAPScd and so any sequences in that foop will look like unitary valucs from its point of view. Note that if
sequences were multidimensional abjects as in APL. then things would be much more complicated because
cach level of looping would only strip a single dimension off of a sequence,

Implicit Map$, and Coercions

‘Ihe processing of the body of a LETS starts by breaking apart all of the S-APPLYS as follows. SETQS of new
variables are created as needed so that every argument Lo an S~APPLY is a vaciable, and the output of every S-
APPLY is immediatcly put in a variable, ‘This transformation is illustrated below. Note that the output
variable ficlds of the S-APPLYs arc uscd to specify the destinations for their outputs. ‘The use of a MULTIPLE-
VALUE will lcad to a list of morce than onc variable in this ficld. ‘The types of the variables are chosen so that
the types match the argument types of the fragments and so that the inputs and outputs to an ordinary
cxpression arc all of the same type. ‘The fact that nested loops have already been removed guarantees that this
is in fact pussible. Note that exccution order is preserved when expressions are broken apart.

(lets (x a b y)
(setq x (Erange 1 10))
(setq y (Elist list))
(setq a (car y))
(setq y (cdr y))
(setq b (car y))
(reverse (Rl1ist (1ist 'item x (+ a b)))))
becomes: (et (ul u2 ul)
(lets (x a b y 2)
(setq ul 1)
(setq u2 10)
(S-apply (x) (S- frag ‘Erange
(S-apply (y) (S:frag 'Elist .
(setq a (car y))
(setq y (cdr y))
(setq b (car y))
(setg z (1ist *item x (+ a b)))
(S-apply (u3) (S-frag ‘Riist ...
(reverse ul)))
becomes: (et (ul u2 u3)
(lets (x ab y 2)
{S-r>ply (ul) (S-frag '(eat-start #'(lambda ()
(S-«pply (u2) (S-frag ‘(at-start #'(1ambda ()
(S-apply (x) (S-frag 'Erange ...) ul u2)
(S-apply (y) (S-frag ‘Elist ...) 11st)
(S-apply (a) (S-frag '(mapS #'car ...) ...)
(S-apply (y) (S-frag '(map$S #'cdr ...) ...)
(S-apply (b) (S-frag '(mapS #'car ...) ...) ¥
(S-apply (z) (S-frag '(mapS #'(lambda (m n o)
(list m (+ n 0))) ...) ...)

vee) Ul u2)
..) 11st)

) z)

) -.2))
)

1)
10)) ...))

x ab)
(S-apply (ud) (S-frag 'Riist ...} z)

(S-apply T (S-frag '(at-end #'reverse ...) ...) uld)))

While things arc being decomposed, the following coercions are applied. Every ordinary cxpression which
was nested in an S-APPLY which requires a unitary valuc is computed AT-START. FEvery ordinary expression
which appcared at top level and which receives unitary output values from sequence functions is computed
AT-END. Every other ordinary cxpression is MAPScd. RLAST is used to cocree the value of the last form to
unitary if it isn’t unitary already. These coercions lead tc the third version of the LETS above. Note that the
introduced meta sequence functions are immediately expanded into S-APPLYS,

PR L S W UL U Ui

T OIS e
L L ate . aaess N LA

ARSI

-

W e
RN

a

1

b onad

Waters -55- ‘The Compilation i’roccss

Combining Fragments

Once all of the appropriaie coercions have been applied, the fragments are combined together into one
large fragment. ‘I'his is done in two stages. First, cach S-APPLY is converted into a naked fragment. Note
_ that cvery argument to an S-APPLY is a variable, and its outputs go directly to variables. (The example below
shows the RLIST in the example program above.) ‘The S-APPLY is converted into a naked fragment by mercly
renaming the arguments to the appropriate variables and making them free as shown.
(S-apply (u3) (S-frag 'R1ist ((item SI) (result UO))

((setq result nil)) ‘
((setq result (cons item result)))

—
S

((setq result (nreverse result)))

()
z)
becomes:(S-frag ()
((setq ud nil))
((setq u3 (cons z u3)))
()

{(setq u3 (nreverse ul)))
)

Any outputs which arc not used are converted to aux variables. Afier this phase, the only arguments
which remain in fragments arc aux and flag variables. The outputs of the last form in the LETS are retained as
return valucs and will be used as the return values form the foop as a whole. Note that the last form may be a
VALUES.

Now that cverything is a fragment, they are all combined together starting at the top. ‘This combination -

goes pairwise as shown below. The new fragment is created merely by concatenating the corresponding parts
of the two initial fragments. As a result, the order of evaluation is prescrved. Note that due to all of the
renaming that occurred above, all of the data flow works out right without any special processing being
nccessary. Also since all variable names in- the original fragments were GENSYMs there is no possibility of
unintentional name clashes. ,
((S-FRAG argsa icodea codela codela peodea ucodea)
(S-FRAG argsb icodeb codelb code2b pcodeb ucodeb))
becomes: (S-FRAG argsa-argsb
icodea-icodeb
codela-codelb
) ‘ cude2a-code2b
20 peodea-peodeb
. ucodea-ucodeb)
' . The only complexity is involved with filters. If any of the _variablcs rcad by cudelb or code2b are
o controlled by filter flags in the first fragment, then both codelb and code2b are nested in S-XF forms
i A . predicated on the AND of these flags. For examiple, suppose that codelb reads two sequence variables S1 and
E" $2. which are controlled by the flags F1 and F2 respectively. In this case, codel/b would be converted to
b (S-1F (AND F1 F2) . codelb) before combination. Code2b would be converted analogously.
C A
X
P.:.:_ .
o5
LA

e
R

]' !I l.' . Aot
R AT el
ot @V T]

0 T 20 e 2 a4
AR

Vot
. .t

N
!

‘The Compilation Process - 56 - ' - Waters

The Form of the Loops Produced

Oncc all of the fragments have been combined into a single large fragment, this fragment is converted into
a loop as indicated below. “The various parts of the fragment are merely concatenated together into the body
of a PROG. Far-list is a list of all of the aux, flag. and return variables which are specificd in arg-list. ‘The
return-values arc the return variables from arg-list. If the fragment contains any ucode then the PROG
produced is wrapped in an UNWIND-PROTECT containing this ucode.

(S-FRAG args icode (T codel code2) pcode)
becomes:(PROG T varlist

S icode

L codel
code?
(go L)

E pcode

(RETURN-FROM T . return-values))

Note that the PROG produced is just basic Lisp. (On the LispMachine this PROG is named T so that it will
be transparent to the user.) The PROG contains a number of variables and tags created by the macros. These
arc all GENSYMs and so that they cannet conflict with any user variables. As a debugging feature, the macros
make sure that all of the stream variables specificd in a LETS become variables in the PROG. At a break point,
you can look at thesc variables in order to sec the current clement in cach of the corresponding sequences.
Also for debugging convenience, the variable LETS: S-PROG holds the PROG produced from the most recently
macro cxpanded loop expression. You can look at it in order to see exactly what code was produced.

The form (DONE) cxpands into (GO £). The form (DONE . resulis) expands into (RETURN . resulis). Note
that no special action is taken with regard to terminations, they just end up in the right places as things are
combined together. The form (RESTART) cxpands into (G0 S). This also just ends up in the nght place.
The form (S-1f pred. actions) expands into (COND (pred. actions)).

DefunS

The pumose of a (DEFUNS name lambda-list . body) is to define a scquence function. The body is exactly
likc the body of a LETS. In addition the aux variables in the lambda-list arc just like LETS variables, These
variables and the bod)y are processed exactly as described above in order to create a fragment. The arguments
in the lambda-list specify that some of the free variables in the fragment are actually non-free inputs. The
fragment is modified to reflect this. Note that these variables must be unigue in the body so that the system
can usc SUBST to rename them. A sequence function macro is then constructed with the appropriite name.

Variable Simplification

One problem with the compilation process outlined above is that it creates a vary large number of
variables which end up not really doing anything useful. Due to the fact that the LispMachine compiler is not
capable of optimizing away these variables, the macro package performs a set of simplifications in order to get
rid of them itself,

‘Ihe following simplifications are performed wherever possible. Notc that this process is applied only to
the variables created by the system. The variables explicitly declared in a LETS arc never removed. and any
iree variables used in the loop are never removed.

PSS ST P ST SA Wl VO W WP WL

ol T

e Ardead

Waters ' .57- The Compilation Process

1) If a variable is never read than it is climinated. Any computations performed to assign values to it
are also climinated if it can be cstablished that there is no possibility of a side-effect occurring.

2) If you have (SETQ X Y) and X is SETQed only once and Y is not SETQed in the range of reading X,
then the two variables can be merged together into once variable eliminating whichever one can be
climinated.

3) Ifyouhave (SETQ X EXPR) and X is rcad only once, and nothing rcad by EXPR is modified between

here and the use of X and there is no possibility of trouble with side-cffects from moving EXPR, then
EXPR can be substituted for X climinating X.

Anuther arca where ncedless complexity results is filters. The processing above leads to the use of a
number of flags and S-IF forms. Thesc are simplificd as follows: If two S-1Fs in a row arc predicated on the
same flag expression then they are combined together into one in order to reduce the number of references to
the flags. When this is done in conjunction with the variable simplifications above, simple cases of filters end
up as just simple CONDs.

Functional Summary -58- Waters ’ '.J

Appendix B: Functional Summary

This Appendix is intended as a short reference manual for the system. 1t assumes that you have alrcady
rcad the rest of the paper and just gives a very bricf description of each of the macros available to the user.
The macros arc listed in logical groupings. Note that all of these macro names are global on the LispMachine.
The summary begins with a description of the basic macros.

10tS ((varvalue) ...) &rest body
This has two purposes: to define a group of variables which contain sequences of values. and to
indicate that a group of sequence expressions (the bady) should be combined together into a single
loup. Each value will be cocreed to a sequence. If it is omitted (or if the var-value pair is rendered as
merely a symbol) then the initial valuc is undefined and the variable must be written before it can be
read. A tree of vars instcad of a symbol can be specified, in which case destructuring is performed.
Note that cvery frec variable is per force unitary.,

Al of the expressions in the body are combined into a single loop. Each unitary cxpression in the
body will be automatically MAPScd if possible. ‘The only time it is not possible is if it uses the output of
some reducer. In this latter casc, the expression will be automatically computed AT-END, The value of
the Lust expression in the bodly is coerced to unitary and returned as the value of the loop.

In the body, you can usc SETQ to assign to a sequence variable. MULTIPLE-VALUE can be used to
access the multiple values of a sequence function. The last form can be a VALUES indicating that
multiple valucs are to be returncd from the loop as a whole.

defun$ name lambda-list &rest body)

The purpose of this form is to define a new sequence function. The lambda-list is just like an ordinary e

lambda list except that it supports only the following four keywords. SUNITARY indicates that

following arguments arc unitary. ‘This is the default to start with. &SEQUENCE indicates that the

following arguments carry sequences. &OPTIONAL indicates that the following arguments arc optional.

8AUX indicates that the following arguments arc internal variables. With both of the last two cases -

default values can be specified by rendering the argument as a variable-value pair. If no default value

is specified then the value the variable is undefined, and the variable must be written before it can be

read. :
DEFUNS defines a macro of the specified name defining the sequence function specificd by body.
The budy is exactly like the body of a LETS except that it is not immediately coded up into a loop, and
the value of the last cxpression is not cocrced to unitary. Rather, this value is returned whether it is
unitary or a sequence.

done &rast resulls .
In a loop cxpression the macro DONE can be executed in order to indicate that the Joop should be

‘ _ immediately terminated. 1f no results are specified. then the loop will be terminated normally

- cxccuting all AT-END code, and returning the result specified by the last expression. If any reswlt

. arguments arc supplicd then they will be returned as the values of the loup. Note, however, that in this

| " casc any AT-END code will be skipped. Any AT-UNWIND code is executed in cither case.

s restart _

\ Executing this inside of a loop expression causes the immediately containing loop to he restarted at the -

beginning. All of the loop variables arce reinitialized. ‘Typically, some side-effects will have been
performed so that restarting the loop will lead to a djfferent computation.

T O E Jumt i e audi)i aeiEPAasn v " e i o_i’.-_j-‘l”—"‘v ry V-."‘_*V"_'."‘.'.*~'- (e . . BRI

.) Waters -59- ' Functional Summary

Mcta Sequence Functions

The meta sequence functions take in ordinary functions and convert them into sequence functions. Each
one takes in onc or more functional arguments. Each of these can be cither a quoted function name, or a
quoted lambda expression, or-a macro which expands into cither one.

map$ function sequence...
The nth clement of the output sequence is computed by applying finction to the nth clements of the
input sequences. However, if the nth clement of any of the input sequences is empty then finction is
not applicd and the nth clement of the output is empty. Notc that the length of the output sequence is
the samne as the length of the shortest inpul soequence.
8. (mapS#'+[1_234])[12_3])=>[2__86]

scans function init sequence ...

This is just likc MAPS cxcept that it has an internal state variable. ‘The initial (zcroth) value of this
viriable is the unitary value init. The elements of the output arc the successive valuces of the state not
including its zcroth valuc. ‘The nth value of the state is computed by calling function with the prior
value of the state as its first argument and the nth clements of the inputs as its remaining arguments,
However, if the nth element of any of the input sequences is empty then function is not applicd, the
state is not changed, and the nth clement of the output is empty. The length of the output sequence is
the same as the length of the shortest input scquence.

e, (scanS#'+0[1_234])=>[1_3610]

- t11terS function sequence ...

The clements of the output sequence are computed as follows. 1F the result of applying finction to the
nth elements of the input scquences is non-NIL then the nth clement of the first input is used as the nth
cicment of the output; otherwise the nth output clement is empty. However, if the nth clement of any
of the input sequences is empty then function is not applicd and the nth clement of the output is
empty. Note that the output sequence is cxactly the same length as the shortest input sequence:
however, some of the output sequence slots may be empty.

cg., (FilterS#' > [1_234]J[02_3])=>[1._.]

reduceS fiinction init sequence

'This creates a sequence function with an internal state variable. The state is initialized to the (unitary)
value init. "The nth value of the state is computed by calling finction with the prior valuc of the state as
its first argument and the nth clements of the inputs as its remaining arguments. However, if the nth
clement of any of the input sequences is ecmpty then fiunction is not applicd and the state is not
changed. When the input scquences are cxhausted, the final valuc of the state variable is returned as

~ the (unitary) result. If there arc no non-cmpty clements in the input sequences then the value init will
be returned. This form is equivalent to: (RLAST (SCANS finction init sequence ...) init).
¢.g., (reduceS#' +0[12_3][1.234])»> 8
eg., (reduceS#'+0[][1.2343)2>0

generstoS function inil sequence...
-~ This uses an internal state variable in order to gerierate a potentially infinite scquence of values. The
unitary valuc inir specifies the initial (first) value of the state. On the nth cycle of the loop, function is
called with the nth value of the state as jts first argument and the nth clements of the input sequences
(if any) as its remaining arguments in order to compute the next value of the state. Howecver, if the nth

Functional Summary -60- Waters

clement of any of the input sequences is empty then function is not called and the value of the state is
not changed. The output sequence consists of all of the values of the state including the first onc init.
It there are no input sequences (the normal case) or if nonc of them are finite, then the output will be
infinitc. If any of the input sequences is finite, then the length of the output will be the same the
length of the shortest input. Note that in this casc. the final valuc of the state will not be returned as
part of the output.

cg.. (generateS#'1+0)=>[01234567...]

c.8.. (generateS #' (1ambda (prev new) new) NIL [12 34]) => [NIL 12 3]

truncates finciion sequence ...
This is uscd to create sequence functions which take in potentially infinite sequences and return
sequences which have been truncated to finite length. ‘The function argument is applied (o successive
groups of corresponding clements of the input sequences. 'The eutput scquence is composed of the
clements of the first input sequence up to but not including the first clement corresponding to a
non-NIL evaluation of fumction. As with the other meta sequence functions, il any of the nih clements
of the input sequences are empty then finction is not applied and the nth output clement is empty.
Notc that the output sequence is typically shorter than any of the input sequences, and can be of length
zero. .
cg.. (truncateS#'C[1_.234]J[02_4))=>[1__]
cg.. (truncateS#'>[1._234]J[02_4])=>[]

enumerates runcate-function gencrale-function init
‘Ths is an abbreviation for (TRUNCAYES fruncate-function (GENERATES generate-function init)). 1t is
the preferred way to define an cnumerator.
¢.8. (enumerateS # zerop #'1-.5)=>[64321]

at-start functionarg ...
This computes (function arg ...) in the initialization code before a loop begins. All of the args must be
unitary values.

at-end function arg...
‘This computes (finction arg ...) in the cpilog code after a loop ends. All of the args must be unitary
values. They can be values returncd by reducers. Note that this will not be cxccuted if the loop is
terminated via a DONE with arguments or by some extraordinary exit such as a THROW,

at-unwind functionarg ... _
This computes (functionarg...) in an UNWIND-PROTECY wrapped around the loop. Al of the args
must he unitary values. They can be valucs returned by reducers. The difference between this and AT-
END is that it will be exccuted no matter how the loop is terminated.

ot b

T

Waters -61- Functional Sinmmary

P1. *fined Generators

Gsequence arg
This takes in a unitary argument and produces an infinite sequence of that value. Notc that the -
successive clements of the sequence will all be EQ. .

¢.g8.(Gsequence1) =>[111...]

§ R

Gprevious sequence2optiona) (firsi NIL)
‘This takes in a sequence and returns a sequence which is shifted right onc position. First is used as the
first clement of the output, and the last clement of the input is discarded.
¢.8. (Gprevious [1234]0)=>[0123]

G11st list
‘This generates the successive clements of Jisz. 1t will get an crror if it encounters a non-list CDR,
eg.(Glist '(123)) =) [123NILNILNIL ...]

Gsubl ists lis/
This generates the successive CORs of Jist. Tt will get an error if it encounters a non-list COR.
e.8.. (Gsublists '(123)) *>[(123) (23) (3) NILNILNIL ...]

Grange 2optional (firsr1) (slep-sizéi)'
‘This generates fixnums from first adding step-size at cach step. Note that step-size can be negative.
c8.. (Grange 102) =>[101214...]

v . Predefined Enumerators

Eltst list
‘This enumerates the successive clcmcnts of list up to and not including the first NULL subhst. It will get
an crror if it encounters a non-list CDR.
eg.. (Elist '(123)) =>[123]
eg. (Elistnil) s> []

Esubl 1sta list
This cnumerates the successive CORs of /ist up to and not including the first NULL sublist. It will get an
crror if it encounters a non-list COR.
e.8.. (Esublists '(123)) =>[(123) (23) (3})

Eliste list
This enumecrates the successive clements of list up to and including thc first NULL or non-list sublist.
eg. (Eliste '(12.3))>[123)
€. (E1iste NIL) => [NIL)

Ep1ist plisi > scquence-of properties sequence-of values
This creates two scquence outputs consisting of the successive propcrty names and property values
respectively of the naked plist plist. Note that the function PLIST rcturns the COR of a naked plist. not
a naked plist.
c8. (Eplist "(NILA1B2)) => [AB][12]

..T, R AERERIAEALNERE
P B L

R A
B

’

,._
N

'-'.'0"'2."?"'.':-..'1 “c o
T
1

_—,
Adin

3T (te

—r—————r—— T T T N e e e e e e e o e o e o g g |

Functional Summary -62- ' - Waters

Ealist alist => sequencesof-keys sequence-of-values
This creates two scquences as outputs consisting of the successive keys and values respectively of alist.
It requires that the lists of valucs associated with cach key be lists. ‘They may have 0, 1, or more values
in them. _
c.g.. (Eavist '((A1) (B) (€23))) =>[ACC][123)

Erange first last &optional (step-sizel)
Creates a sequence of integers by counting from first to last by the positive increment step-size.
c.g., (Erange 48 2) => [468]

Evector vec/or&optional (firs10) (last (1- (array-length vector)))
This cnumerates the successive clements of a onc dimensional array. You can specify a subrange of
indices by specifying first and last. (Note that this will not work on MacLisp arrays of numeric type.)
c.g.. (Evector<123>) => [123]

Ef11e file-name
"This creates a sequence by doing successive reads on the file until end of file is reached. File-name can
be anything acceptable to OPEN.
c.g. (Efile "data.11sp”) => [12 3]
if the file contains 123"

Predefined Filters

Fgreater scquence doptional (limift0)
This takes in a sequence of fixnums and restricts it to a scquence containing only clements greater than
limit.
c.g. (Fgreater [123]2) => [__3]

Predefined Reducers

Rlast sequence &optional (defaultNIL) :
‘This takes in a sequence and returns its last value. If the sequence has zero length then default is
returned. ’
c.g., (Rlast[123]) =>3
c.g., (Rlast [JNIL) => NIL

Rignore sequence -
This takes in a sequence and returns no values at all. It is uscful in many of the same situations as
MAPC.
c.g. (Rignore [123]) =

R11st scquence
This creates a list of the elements in sequence. The order of the clements is preserved.
cg., (R1ist [123]) => (123)
c.g.. (R11st []) => NIL

& B

T ——— 't

Waters . -63- Functional Summary

Rbag sequence
‘This creatces a list of the clements in sequence. The order of the elements in the list is undefined. This
is more cfficient if you really do not care what the order is. (The order ends up reversed, but you
should not depend on that, because it could change at any time.)
c.g..(Rbag[123])s>(321)

R11st® sequence
This creates a list of the elements in sequence with the last clement of the sequence ending up as the
COR of the last CONS ccll in the list.
c.g.. (Rliste [123]) => (12.3)
c.g. (Rliste [1]) 2> 1
¢.g. (Rliste []) => NIL

Raconc sequence
‘This creates a list by NCONCing together the successive clements of sequence. ‘This is what MAPCAN does
to create its output, '
c.g.. (Rnconc [(12) NIL-(34)]) =>(1234)

Rappend sequence _
‘This creates a list by APPENDing together the successive clements of sequence.
c.g.. (Rappend [(12) NIL (34)]) »> (123 4)

Rset scquence
‘This combincs the clements in sequence into a list omitting any duplicate clements. ‘The order of this
list is undefined. The predicate which is used to test for duplicates is EQUAL.

c.g.. (Rset [11(2) (2)1).9> ((2) 1)

Reqset scquence .
This is the same as RSET cxcept that the test for duplicates is EQ instcad of EQUAL.

c.g.. (Regset [11(2) (2)]) =>((2) (2)1)

Rp11st sequence-of-propertics sequence-of-values
This takes in a scquence of property names, and a sequence of values and creates a naked plist. Note
that the function SETPLIST cxpects to reccive the CDR of a naked plist as its second argument.
c.g. (Rp1ist [AB] [12]) => (NILB2A1)

Ralist sequence-aof-keys sequence-of-values A
This takes in a sequence of keys, and a sequence of values and creates an alist. All of the values which
have the same key arc combined into a single entry in the alist headed by the key. The predicate which
is used to test for equality of keys is EQUAL.
¢.g.. (Ralist [(A) B (A) B][1234]) *>((B42) ((A)31))

Reqal 18t scquence-of-keys sequence-of-values
This is identical to RALIST except that the test for key cquality is EQ.
c.g. (Reqalist [(A) B (A) B [1234]) *> (((A) 3) (B42)((A)1))

Functional Summary -64 - Waters . r
Rvector vector sequence &optional (ﬁfstO) (last (1- (array-length vector))) » .
‘This takes in a onc dimcnsional array and a sequence of clements and stores those clements in
successive positions in the array. You can specify a specific subrange in the array. (This will not work
with Mucl.isp arrays of numeric type.) Note that this reducer is unusual in that it contains a terminator 3
and will stop the loop as soon as the vector is full,
c.g. (Rvector <NIL NIL NILNIL>{123])=><123NIL>

c.g.. (Rvector <NIL NIL> [123]) =><12> N

4

R? 1o file-name sequence f ’
‘I'his takes in a scquence and writes all of its clements into a file. File- name can be anything acceptable i

to OPEN. N
c.g.(Rfile "data.1isp” [123]) > 7
"<er>1<cr>2<cr>3 " {sprinted in "data.1isp” V

. 4

Rsum scquence-of-integers "
Computes the sum of the integers in its input. 2
cg.(Rsumn[123])=>86 <)
Rsum$ scquence-of-flonums r

Computes the sum of the flonums in .i(s input.
c.g.(Rsum$ [1.1 2.2 3.3])=>6.8

Rmax scquence-of-numbers
Computes the maximum of the numbers in its input. Returns NIL if the input has length zero.
c.g. (Rmax {123]) =>3
¢.8.. (Rmax []) => NIL

Rmin scquence-of-numbers .
Computes the minimum of the numbers in its input. Returns NIL if the input has length zero.
c.8..(Rmin[123]) =>1
c.g.(Rmin[]) => NIL

Rcount scguence
Computes the number of elements in its input.
c.g.. (Recount [123])=>3 '

Rand sequence
Computes the AND of all of the clements of segquence. As with AND, the return value is cither NIL or the
last clement of the input.
c.g.(Rand [123])) »>3

’: c.g. (Rand [1NIL 2]) => NIL .
- cg.(Rand[]) =>7T

- Rand-fast scquence

L This is the same as RAND except that the loop is terminated as soun as a NIL value (if any) is

‘e cncountered. '

cg. (Rand-fast[123])s>3 - -

vy

'_,.—“

i

e ® T Te W e e e ey Ul e e s (. B adn s oen o NP T——)

-65- ' Functional Summary

juence .
computcs the OR of all of the clements of sequence. As with OR, the return valug is cither NIL or the
first non-NIL clement of the input. :
c.g..(Ror[123]) =21

c.g. (Ror [NILNIL]) => NIL

e.g. (Ror []) => NIL

18t sequence
lhis is the same as ROR except that the loop is terminated as soon as a non-NIL valuc (if any) is

encountered.
€.g8.. (Ror-fast[123])=>1

Sietdond: _ Anndeniasesinsisns T ——— o PN Y NP ey CHREPEEPCY

